forked from makepath/xarray-spatial
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathaspect.py
executable file
·246 lines (197 loc) · 6.92 KB
/
aspect.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
from math import atan2
import numpy as np
import numba as nb
from functools import partial
import dask.array as da
from numba import cuda
import xarray as xr
from xrspatial.utils import ngjit
from xrspatial.utils import has_cuda
from xrspatial.utils import cuda_args
from xrspatial.utils import is_cupy_backed
from typing import Optional
# 3rd-party
try:
import cupy
except ImportError:
class cupy(object):
ndarray = False
RADIAN = 180 / np.pi
@ngjit
def _cpu(data):
out = np.zeros_like(data, dtype=np.float64)
out[:] = np.nan
rows, cols = data.shape
for y in range(1, rows-1):
for x in range(1, cols-1):
a = data[y-1, x-1]
b = data[y-1, x]
c = data[y-1, x+1]
d = data[y, x-1]
f = data[y, x+1]
g = data[y+1, x-1]
h = data[y+1, x]
i = data[y+1, x+1]
dz_dx = ((c + 2 * f + i) - (a + 2 * d + g)) / 8
dz_dy = ((g + 2 * h + i) - (a + 2 * b + c)) / 8
if dz_dx == 0 and dz_dy == 0:
# flat surface, slope = 0, thus invalid aspect
out[y, x] = -1.
else:
aspect = np.arctan2(dz_dy, -dz_dx) * RADIAN
# convert to compass direction values (0-360 degrees)
if aspect < 0:
out[y, x] = 90.0 - aspect
elif aspect > 90.0:
out[y, x] = 360.0 - aspect + 90.0
else:
out[y, x] = 90.0 - aspect
return out
@cuda.jit(device=True)
def _gpu(arr):
a = arr[0, 0]
b = arr[0, 1]
c = arr[0, 2]
d = arr[1, 0]
f = arr[1, 2]
g = arr[2, 0]
h = arr[2, 1]
i = arr[2, 2]
two = nb.int32(2.) # reducing size to int8 causes wrong results
eight = nb.int32(8.) # reducing size to int8 causes wrong results
ninety = nb.float32(90.)
dz_dx = ((c + two * f + i) - (a + two * d + g)) / eight
dz_dy = ((g + two * h + i) - (a + two * b + c)) / eight
if dz_dx == 0 and dz_dy == 0:
# flat surface, slope = 0, thus invalid aspect
aspect = nb.float32(-1.) # TODO: return null instead
else:
aspect = atan2(dz_dy, -dz_dx) * nb.float32(57.29578)
# convert to compass direction values (0-360 degrees)
if aspect < nb.float32(0.):
aspect = ninety - aspect
elif aspect > ninety:
aspect = nb.float32(360.0) - aspect + ninety
else:
aspect = ninety - aspect
if aspect > nb.float32(359.999): # lame float equality check...
return nb.float32(0.)
else:
return aspect
@cuda.jit
def _run_gpu(arr, out):
i, j = cuda.grid(2)
di = 1
dj = 1
if (i-di >= 0 and
i+di < out.shape[0] and
j-dj >= 0 and
j+dj < out.shape[1]):
out[i, j] = _gpu(arr[i-di:i+di+1, j-dj:j+dj+1])
def _run_cupy(data: cupy.ndarray) -> cupy.ndarray:
griddim, blockdim = cuda_args(data.shape)
out = cupy.empty(data.shape, dtype='f4')
out[:] = cupy.nan
_run_gpu[griddim, blockdim](data, out)
return out
def _run_dask_cupy(data: da.Array) -> da.Array:
msg = 'Upstream bug in dask prevents cupy backed arrays'
raise NotImplementedError(msg)
# add any func args
# TODO: probably needs cellsize args
_func = partial(_run_cupy)
out = data.map_overlap(_func,
depth=(1, 1),
boundary=cupy.nan,
dtype=cupy.float32,
meta=cupy.array(()))
return out
def _run_numpy(data: np.ndarray) -> np.ndarray:
out = _cpu(data)
return out
def _run_dask_numpy(data: da.Array) -> da.Array:
_func = partial(_cpu)
out = data.map_overlap(_func,
depth=(1, 1),
boundary=np.nan,
meta=np.array(()))
return out
def aspect(agg: xr.DataArray,
name: Optional[str] = 'aspect') -> xr.DataArray:
"""
Calculates, for all cells in the array,
the downward slope direction of each cell
based on the elevation of its neighbors in a 3x3 grid.
The value is measured clockwise in degrees with 0 and 360 at due north.
Flat areas are given a value of -1.
Values along the edges are not calculated.
Parameters:
----------
agg: xarray.DataArray
2D array of elevation values. NumPy, CuPy, NumPy-backed Dask,
or Cupy-backed Dask array.
name: str, optional (default = "aspect")
Name of ouput DataArray.
Returns:
----------
xarray.DataArray
2D array, of the same type as the input, of calculated aspect values.
All other input attributes are preserved.
Notes:
----------
Algorithm References:
- http://desktop.arcgis.com/en/arcmap/10.3/tools/spatial-analyst-toolbox/how-aspect-works.htm#ESRI_SECTION1_4198691F8852475A9F4BC71246579FAA
- Burrough, P. A., and McDonell, R. A., 1998.
Principles of Geographical Information Systems
(Oxford University Press, New York), pp 406
Examples:
----------
Imports
>>> import numpy as np
>>> import xarray as xr
>>> import xrspatial
Create Elevation DataArray
>>> agg = xr.DataArray(np.array([[0, 1, 0, 0],
>>> [1, 1, 0, 0],
>>> [0, 1, 2, 2],
>>> [1, 0, 2, 0],
>>> [0, 2, 2, 2]]),
>>> dims = ["lat", "lon"])
>>> height, width = agg.shape
>>> _lon = np.linspace(0, width - 1, width)
>>> _lat = np.linspace(0, height - 1, height)
>>> agg["lon"] = _lon
>>> agg["lat"] = _lat
Create Aspect DataArray
>>> aspect = xrspatial.aspect(agg)
>>> print(aspect)
<xarray.DataArray 'aspect' (lat: 5, lon: 4)>
array([[nan, nan, nan, nan],
[nan, 0., 18.43494882, nan],
[nan, 270., 341.56505118, nan],
[nan, 288.43494882, 315., nan],
[nan, nan, nan, nan]])
Coordinates:
* lon (lon) float64 0.0 1.0 2.0 3.0
* lat (lat) float64 0.0 1.0 2.0 3.0 4.0
Terrain Example: https://makepath.github.io/xarray-spatial/assets/examples/user-guide.html
"""
# numpy case
if isinstance(agg.data, np.ndarray):
out = _run_numpy(agg.data)
# cupy case
elif has_cuda() and isinstance(agg.data, cupy.ndarray):
out = _run_cupy(agg.data)
# dask + cupy case
elif has_cuda() and isinstance(agg.data, da.Array) and is_cupy_backed(agg):
out = _run_dask_cupy(agg.data)
# dask + numpy case
elif isinstance(agg.data, da.Array):
out = _run_dask_numpy(agg.data)
else:
raise TypeError('Unsupported Array Type: {}'.format(type(agg.data)))
return xr.DataArray(out,
name=name,
coords=agg.coords,
dims=agg.dims,
attrs=agg.attrs)