forked from makepath/xarray-spatial
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathslope.py
executable file
·225 lines (186 loc) · 6.8 KB
/
slope.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
# std lib
from functools import partial
from math import atan
from typing import Union
# 3rd-party
try:
import cupy
except ImportError:
class cupy(object):
ndarray = False
import dask.array as da
from numba import cuda
import numpy as np
import xarray as xr
# local modules
from xrspatial.utils import cuda_args
from xrspatial.utils import get_dataarray_resolution
from xrspatial.utils import has_cuda
from xrspatial.utils import ngjit
from xrspatial.utils import is_dask_cupy
@ngjit
def _cpu(data, cellsize_x, cellsize_y):
out = np.zeros_like(data, dtype=np.float32)
out[:] = np.nan
rows, cols = data.shape
for y in range(1, rows - 1):
for x in range(1, cols - 1):
a = data[y + 1, x - 1]
b = data[y + 1, x]
c = data[y + 1, x + 1]
d = data[y, x - 1]
f = data[y, x + 1]
g = data[y - 1, x - 1]
h = data[y - 1, x]
i = data[y - 1, x + 1]
dz_dx = ((c + 2 * f + i) - (a + 2 * d + g)) / (8 * cellsize_x)
dz_dy = ((g + 2 * h + i) - (a + 2 * b + c)) / (8 * cellsize_y)
p = (dz_dx * dz_dx + dz_dy * dz_dy) ** .5
out[y, x] = np.arctan(p) * 57.29578
return out
def _run_numpy(data: np.ndarray,
cellsize_x: Union[int, float],
cellsize_y: Union[int, float]) -> np.ndarray:
out = _cpu(data, cellsize_x, cellsize_y)
return out
def _run_dask_numpy(data: da.Array,
cellsize_x: Union[int, float],
cellsize_y: Union[int, float]) -> da.Array:
_func = partial(_cpu,
cellsize_x=cellsize_x,
cellsize_y=cellsize_y)
out = data.map_overlap(_func,
depth=(1, 1),
boundary=np.nan,
meta=np.array(()))
return out
@cuda.jit(device=True)
def _gpu(arr, cellsize_x, cellsize_y):
a = arr[2, 0]
b = arr[2, 1]
c = arr[2, 2]
d = arr[1, 0]
f = arr[1, 2]
g = arr[0, 0]
h = arr[0, 1]
i = arr[0, 2]
dz_dx = ((c + 2 * f + i) - (a + 2 * d + g)) / (8 * cellsize_x[0])
dz_dy = ((g + 2 * h + i) - (a + 2 * b + c)) / (8 * cellsize_y[0])
p = (dz_dx * dz_dx + dz_dy * dz_dy) ** 0.5
return atan(p) * 57.29578
@cuda.jit
def _run_gpu(arr, cellsize_x_arr, cellsize_y_arr, out):
i, j = cuda.grid(2)
di = 1
dj = 1
if (i - di >= 0 and i + di < out.shape[0] and
j - dj >= 0 and j + dj < out.shape[1]):
out[i, j] = _gpu(arr[i - di:i + di + 1, j - dj:j + dj + 1],
cellsize_x_arr,
cellsize_y_arr)
def _run_cupy(data: cupy.ndarray,
cellsize_x: Union[int, float],
cellsize_y: Union[int, float]) -> cupy.ndarray:
cellsize_x_arr = cupy.array([float(cellsize_x)], dtype='f4')
cellsize_y_arr = cupy.array([float(cellsize_y)], dtype='f4')
griddim, blockdim = cuda_args(data.shape)
out = cupy.empty(data.shape, dtype='f4')
out[:] = cupy.nan
_run_gpu[griddim, blockdim](data,
cellsize_x_arr,
cellsize_y_arr,
out)
return out
def _run_dask_cupy(data: da.Array,
cellsize_x: Union[int, float],
cellsize_y: Union[int, float]) -> da.Array:
msg = 'Upstream bug in dask prevents cupy backed arrays'
raise NotImplementedError(msg)
_func = partial(_run_cupy,
cellsize_x=cellsize_x,
cellsize_y=cellsize_y)
out = data.map_overlap(_func,
depth=(1, 1),
boundary=cupy.nan,
dtype=cupy.float32,
meta=cupy.array(()))
return out
def slope(agg: xr.DataArray,
name: str = 'slope') -> xr.DataArray:
"""
Returns slope of input aggregate in degrees.
Parameters:
---------
agg: xarray.DataArray
2D array of elevation band data.
name: str, optional (default = 'slope')
name property of output xarray.DataArray
Returns:
---------
xarray.DataArray
2D array, of the same type as the input, of calculated slope values.
All other input attributes are preserved.
Notes:
---------
Algorithm References:
- http://desktop.arcgis.com/en/arcmap/10.3/tools/spatial-analyst-toolbox/how-slope-works.htm
- Burrough, P. A., and McDonell, R. A., 1998.
Principles of Geographical Information Systems
(Oxford University Press, New York), pp 406
Examples:
---------
Imports
>>> import numpy as np
>>> import xarray as xr
>>> from xrspatial import slope
Create Data Array
>>> agg = xr.DataArray(np.array([[0, 0, 0, 0, 0, 0, 0],
>>> [0, 0, 2, 4, 0, 8, 0],
>>> [0, 2, 2, 4, 6, 8, 0],
>>> [0, 4, 4, 4, 6, 8, 0],
>>> [0, 6, 6, 6, 6, 8, 0],
>>> [0, 8, 8, 8, 8, 8, 0],
>>> [0, 0, 0, 0, 0, 0, 0]]),
>>> dims = ["lat", "lon"],
>>> attrs = dict(res = 1))
>>> height, width = agg.shape
>>> _lon = np.linspace(0, width - 1, width)
>>> _lat = np.linspace(0, height - 1, height)
>>> agg["lon"] = _lon
>>> agg["lat"] = _lat
Create Slope Data Array
>>> print(slope(agg))
<xarray.DataArray 'slope' (lat: 7, lon: 7)>
array([[ 0, 0, 0, 0, 0, 0, 0],
[ 0, 46, 60, 63, 73, 70, 0],
[ 0, 60, 54, 54, 68, 67, 0],
[ 0, 68, 60, 54, 60, 71, 0],
[ 0, 73, 63, 60, 54, 72, 0],
[ 0, 74, 71, 71, 72, 75, 0],
[ 0, 0, 0, 0, 0, 0, 0]])
Coordinates:
* lon (lon) float64 0.0 1.0 2.0 3.0 4.0 5.0 6.0
* lat (lat) float64 0.0 1.0 2.0 3.0 4.0 5.0 6.0
Attributes:
res: 1
"""
cellsize_x, cellsize_y = get_dataarray_resolution(agg)
# numpy case
if isinstance(agg.data, np.ndarray):
out = _run_numpy(agg.data, cellsize_x, cellsize_y)
# cupy case
elif has_cuda() and isinstance(agg.data, cupy.ndarray):
out = _run_cupy(agg.data, cellsize_x, cellsize_y)
# dask + cupy case
elif has_cuda() and is_dask_cupy(agg):
out = _run_dask_cupy(agg.data, cellsize_x, cellsize_y)
# dask + numpy case
elif isinstance(agg.data, da.Array):
out = _run_dask_numpy(agg.data, cellsize_x, cellsize_y)
else:
raise TypeError('Unsupported Array Type: {}'.format(type(agg.data)))
return xr.DataArray(out,
name=name,
coords=agg.coords,
dims=agg.dims,
attrs=agg.attrs)