-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathRandomizedMotifSearch.py
144 lines (124 loc) · 5.67 KB
/
RandomizedMotifSearch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
import random
def RandomizedMotifSearch(Dna, k, t):
M = RandomMotifs(Dna, k, t)
BestMotifs = M
while True:
Profile = ProfileWithPseudocounts(M)
M = Motifs(Profile, Dna)
if Score(M) < Score(BestMotifs):
BestMotifs = M
else:
return BestMotifs
def RandomMotifs(Dna, k, t):
col = len(Dna[0])
s = []
for i in range(t):
new = random.randint(0, (col - k))
s.append(Dna[i][new:new + k])
return s
def CountWithPseudocounts(Motifs):
count = {}
k = len(Motifs[0])
for symbol in "ACGT":
count[symbol] = []
for j in range(k):
count[symbol].append(1)
t = len(Motifs)
for i in range(t):
for j in range(k):
symbol = Motifs[i][j] # range over all elements symbol = Motifs[i][j] of the count matrix
count[symbol][j] += 1 # add 1 to count[symbol][j].
return count
def ProfileWithPseudocounts(Motifs):
t = len(Motifs)
t += 4
k = len(Motifs[0])
profile = CountWithPseudocounts(Motifs)
for symbol in "ACGT":
for c in range(k):
profile[symbol][c] /= t
return profile
def Pr(Text, Profile):
p = 1
for i in range(len(Text)):
p = p * Profile[Text[i]][i]
return p
def ProfileMostProbableKmer(Text, k, Profile):
n = len(Text)
goal = Text[0:k]
m = 0
for i in range(n - k + 1):
val = Pr(Text[i:i + k], Profile)
if val > m:
m = val
goal = Text[i:i + k]
return goal
def Motifs(Profile, Dna):
k = len(Profile['A'])
n = len(Dna)
my_list = []
for i in range(n):
new = ProfileMostProbableKmer(Dna[i], k, Profile)
my_list.append(new)
return my_list
def Count(Motifs):
count = {}
k = len(Motifs[0])
for symbol in "ACGT":
count[symbol] = []
for j in range(k):
count[symbol].append(0)
t = len(Motifs)
for i in range(t):
for j in range(k):
symbol = Motifs[i][j] # range over all elements symbol = Motifs[i][j] of the count matrix
count[symbol][j] += 1 # add 1 to count[symbol][j].
return count
def Consensus(Motifs):
consensus = ""
count = Count(Motifs)
k = len(Motifs[0])
for j in range(k):
m = 0
frequentSymbol = ""
for symbol in "ACGT":
if count[symbol][j] > m:
m = count[symbol][j]
frequentSymbol = symbol
consensus += frequentSymbol
return consensus
def Score(Motifs):
count = Count(Motifs)
consensus = Consensus(Motifs)
score = 0
i = 0
r = len(Motifs)
for char in consensus:
p = count[char][i]
x = r - p
score += x
i = i+1
return score
Dna = [
"GCGCCCCGCCCGGACAGCCATGCGCTAACCCTGGCTTCGATGGCGCCGGCTCAGTTAGGGCCGGAAGTCCCCAATGTGGCAGACCTTTCGCCCCTGGCGGACGAATGACCCCAGTGGCCGGGACTTCAGGCCCTATCGGAGGGCTCCGGCGCGGTGGTCGGATTTGTCTGTGGAGGTTACACCCCAATCGCAAGGATGCATTATGACCAGCGAGCTGAGCCTGGTCGCCACTGGAAAGGGGAGCAACATC",
"CCGATCGGCATCACTATCGGTCCTGCGGCCGCCCATAGCGCTATATCCGGCTGGTGAAATCAATTGACAACCTTCGACTTTGAGGTGGCCTACGGCGAGGACAAGCCAGGCAAGCCAGCTGCCTCAACGCGCGCCAGTACGGGTCCATCGACCCGCGGCCCACGGGTCAAACGACCCTAGTGTTCGCTACGACGTGGTCGTACCTTCGGCAGCAGATCAGCAATAGCACCCCGACTCGAGGAGGATCCCG",
"ACCGTCGATGTGCCCGGTCGCGCCGCGTCCACCTCGGTCATCGACCCCACGATGAGGACGCCATCGGCCGCGACCAAGCCCCGTGAAACTCTGACGGCGTGCTGGCCGGGCTGCGGCACCTGATCACCTTAGGGCACTTGGGCCACCACAACGGGCCGCCGGTCTCGACAGTGGCCACCACCACACAGGTGACTTCCGGCGGGACGTAAGTCCCTAACGCGTCGTTCCGCACGCGGTTAGCTTTGCTGCC",
"GGGTCAGGTATATTTATCGCACACTTGGGCACATGACACACAAGCGCCAGAATCCCGGACCGAACCGAGCACCGTGGGTGGGCAGCCTCCATACAGCGATGACCTGATCGATCATCGGCCAGGGCGCCGGGCTTCCAACCGTGGCCGTCTCAGTACCCAGCCTCATTGACCCTTCGACGCATCCACTGCGCGTAAGTCGGCTCAACCCTTTCAAACCGCTGGATTACCGACCGCAGAAAGGGGGCAGGAC",
"GTAGGTCAAACCGGGTGTACATACCCGCTCAATCGCCCAGCACTTCGGGCAGATCACCGGGTTTCCCCGGTATCACCAATACTGCCACCAAACACAGCAGGCGGGAAGGGGCGAAAGTCCCTTATCCGACAATAAAACTTCGCTTGTTCGACGCCCGGTTCACCCGATATGCACGGCGCCCAGCCATTCGTGACCGACGTCCCCAGCCCCAAGGCCGAACGACCCTAGGAGCCACGAGCAATTCACAGCG",
"CCGCTGGCGACGCTGTTCGCCGGCAGCGTGCGTGACGACTTCGAGCTGCCCGACTACACCTGGTGACCACCGCCGACGGGCACCTCTCCGCCAGGTAGGCACGGTTTGTCGCCGGCAATGTGACCTTTGGGCGCGGTCTTGAGGACCTTCGGCCCCACCCACGAGGCCGCCGCCGGCCGATCGTATGACGTGCAATGTACGCCATAGGGTGCGTGTTACGGCGATTACCTGAAGGCGGCGGTGGTCCGGA",
"GGCCAACTGCACCGCGCTCTTGATGACATCGGTGGTCACCATGGTGTCCGGCATGATCAACCTCCGCTGTTCGATATCACCCCGATCTTTCTGAACGGCGGTTGGCAGACAACAGGGTCAATGGTCCCCAAGTGGATCACCGACGGGCGCGGACAAATGGCCCGCGCTTCGGGGACTTCTGTCCCTAGCCCTGGCCACGATGGGCTGGTCGGATCAAAGGCATCCGTTTCCATCGATTAGGAGGCATCAA",
"GTACATGTCCAGAGCGAGCCTCAGCTTCTGCGCAGCGACGGAAACTGCCACACTCAAAGCCTACTGGGCGCACGTGTGGCAACGAGTCGATCCACACGAAATGCCGCCGTTGGGCCGCGGACTAGCCGAATTTTCCGGGTGGTGACACAGCCCACATTTGGCATGGGACTTTCGGCCCTGTCCGCGTCCGTGTCGGCCAGACAAGCTTTGGGCATTGGCCACAATCGGGCCACAATCGAAAGCCGAGCAG",
"GGCAGCTGTCGGCAACTGTAAGCCATTTCTGGGACTTTGCTGTGAAAAGCTGGGCGATGGTTGTGGACCTGGACGAGCCACCCGTGCGATAGGTGAGATTCATTCTCGCCCTGACGGGTTGCGTCTGTCATCGGTCGATAAGGACTAACGGCCCTCAGGTGGGGACCAACGCCCCTGGGAGATAGCGGTCCCCGCCAGTAACGTACCGCTGAACCGACGGGATGTATCCGCCCCAGCGAAGGAGACGGCG",
"TCAGCACCATGACCGCCTGGCCACCAATCGCCCGTAACAAGCGGGACGTCCGCGACGACGCGTGCGCTAGCGCCGTGGCGGTGACAACGACCAGATATGGTCCGAGCACGCGGGCGAACCTCGTGTTCTGGCCTCGGCCAGTTGTGTAGAGCTCATCGCTGTCATCGAGCGATATCCGACCACTGATCCAAGTCGGGGGCTCTGGGGACCGAAGTCCCCGGGCTCGGAGCTATCGGACCTCACGATCACC"]
print(RandomizedMotifSearch(Dna, 8, 5))
N=100
besti = []
bScor = 100000000
for i in range(N):
current = RandomizedMotifSearch(Dna, 15, 10)
cScor = Score(current)
if cScor < bScor:
bScor = cScor
besti = current
print(besti)
print(bScor)