forked from asialarocca/VBOC
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtriplependulum_testdata.py
145 lines (120 loc) · 6.19 KB
/
triplependulum_testdata.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
import numpy as np
import random
from numpy.linalg import norm as norm
from VBOC.triplependulum_class_vboc import OCPtriplependulumINIT
import warnings
warnings.filterwarnings("ignore")
from multiprocessing import Pool
def testing(v):
# Reset the number of steps used in the OCP:
N = ocp.N
ocp.ocp_solver.set_new_time_steps(np.full((N,), 1.))
ocp.ocp_solver.update_qp_solver_cond_N(N)
# Time step duration:
dt_sym = 1e-2
# Initial velocity optimization direction (the cost is in the form p[0] * dtheta1 + p[1] * dtheta2 + p[2] * dt):
ran1 = random.choice([-1, 1]) * random.random()
ran2 = random.choice([-1, 1]) * random.random()
ran3 = random.choice([-1, 1]) * random.random()
norm_weights = norm(np.array([ran1, ran2, ran3]))
p = np.array([ran1/norm_weights, ran2/norm_weights, ran3/norm_weights, 0.])
# Bounds on the initial state:
q_init_1 = q_min + random.random() * (q_max-q_min)
q_init_2 = q_min + random.random() * (q_max-q_min)
q_init_3 = q_min + random.random() * (q_max-q_min)
q_init_lb = np.array([q_init_1, q_init_2, q_init_3, v_min, v_min, v_min, dt_sym])
q_init_ub = np.array([q_init_1, q_init_2, q_init_3, v_max, v_max, v_max, dt_sym])
# Bounds on the final state:
q_fin_lb = np.array([q_min, q_min, q_min, 0., 0., 0., dt_sym])
q_fin_ub = np.array([q_max, q_max, q_max, 0., 0., 0., dt_sym])
# Guess:
x_sol_guess = np.full((N, 7), np.array([q_init_1, q_init_2, q_init_3, 0., 0., 0., dt_sym]))
u_sol_guess = np.full((N, 3), np.array([0.,0.,0.]))
# Iteratively solve the OCP with an increased number of time steps until the solution converges:
cost = 1e6
while True:
# Reset current iterate:
ocp.ocp_solver.reset()
# Set parameters, guesses and constraints:
for i in range(N):
ocp.ocp_solver.set(i, 'x', x_sol_guess[i])
ocp.ocp_solver.set(i, 'u', u_sol_guess[i])
ocp.ocp_solver.set(i, 'p', p)
ocp.ocp_solver.constraints_set(i, 'lbx', np.array([q_min, q_min, q_min, v_min, v_min, v_min, dt_sym]))
ocp.ocp_solver.constraints_set(i, 'ubx', np.array([q_max, q_max, q_max, v_max, v_max, v_max, dt_sym]))
ocp.ocp_solver.constraints_set(i, 'lbu', np.array([-tau_max, -tau_max, -tau_max]))
ocp.ocp_solver.constraints_set(i, 'ubu', np.array([tau_max, tau_max, tau_max]))
ocp.ocp_solver.constraints_set(i, 'C', np.zeros((3,7)))
ocp.ocp_solver.constraints_set(i, 'D', np.zeros((3,3)))
ocp.ocp_solver.constraints_set(i, 'lg', np.zeros((3)))
ocp.ocp_solver.constraints_set(i, 'ug', np.zeros((3)))
C = np.zeros((3,7))
d = np.array([p[:3].tolist()])
dt = np.transpose(d)
C[:,3:6] = np.identity(3)-np.matmul(dt,d) # np.identity(3)-np.matmul(np.matmul(dt,np.linalg.inv(np.matmul(d,dt))),d)
ocp.ocp_solver.constraints_set(0, "C", C, api='new')
ocp.ocp_solver.constraints_set(0, "lbx", q_init_lb)
ocp.ocp_solver.constraints_set(0, "ubx", q_init_ub)
ocp.ocp_solver.constraints_set(N, "lbx", np.array([q_min, q_min, q_min, 0., 0., 0., dt_sym]))
ocp.ocp_solver.constraints_set(N, "ubx", np.array([q_max, q_max, q_max, 0., 0., 0., dt_sym]))
ocp.ocp_solver.set(N, 'x', x_sol_guess[-1])
ocp.ocp_solver.set(N, 'p', p)
# Solve the OCP:
status = ocp.ocp_solver.solve()
# If the solver finds a solution, compare it with the previous. If the cost has decresed, keep increasing N, alternatively keep increasing N.
# If the solver fails, reinitialize N and restart the iterations with slight different initial conditions.
if status == 0:
# Compare the current cost with the previous:
cost_new = ocp.ocp_solver.get_cost()
if cost_new > float(f'{cost:.3f}') - 1e-3:
break
cost = cost_new
# Update the guess with the current solution:
x_sol_guess = np.empty((N+1,7))
u_sol_guess = np.empty((N+1,3))
for i in range(N):
x_sol_guess[i] = ocp.ocp_solver.get(i, "x")
u_sol_guess[i] = ocp.ocp_solver.get(i, "u")
x_sol_guess[N] = ocp.ocp_solver.get(N, "x")
u_sol_guess[N] = np.array([0.,0.,0.])
# Increase the number of time steps:
N = N + 1
ocp.ocp_solver.set_new_time_steps(np.full((N,), 1.))
ocp.ocp_solver.update_qp_solver_cond_N(N)
else:
# Reset the number of steps used in the OCP:
N = ocp.N
ocp.ocp_solver.set_new_time_steps(np.full((N,), 1.))
ocp.ocp_solver.update_qp_solver_cond_N(N)
# Initial velocity optimization direction:
ran1 = ran1 + random.random() * random.choice([-1, 1]) * 0.01
ran2 = ran2 + random.random() * random.choice([-1, 1]) * 0.01
ran3 = ran3 + random.random() * random.choice([-1, 1]) * 0.01
norm_weights = norm(np.array([ran1, ran2, ran3]))
p = np.array([ran1/norm_weights, ran2/norm_weights, ran3/norm_weights, 0.])
# Bounds on the initial state:
q_init_1 = q_init_1 + random.random() * random.choice([-1, 1]) * 0.01
q_init_2 = q_init_2 + random.random() * random.choice([-1, 1]) * 0.01
q_init_3 = q_init_3 + random.random() * random.choice([-1, 1]) * 0.01
q_init_lb = np.array([q_init_1, q_init_2, q_init_3, v_min, v_min, v_min, dt_sym])
q_init_ub = np.array([q_init_1, q_init_2, q_init_3, v_max, v_max, v_max, dt_sym])
# Guess:
x_sol_guess = np.full((N, 7), np.array([q_init_1, q_init_2, q_init_3, 0., 0., 0., dt_sym]))
u_sol_guess = np.full((N, 3), np.array([0.,0.,0.]))
cost = 1e6
return ocp.ocp_solver.get(0, "x")[:6]
# Ocp initialization:
ocp = OCPtriplependulumINIT()
# Position, velocity and torque bounds:
v_max = ocp.dthetamax
v_min = - ocp.dthetamax
q_max = ocp.thetamax
q_min = ocp.thetamin
tau_max = ocp.Cmax
# Test data generation:
cpu_num = 30
num_prob = 1000
with Pool(cpu_num) as p:
data = p.map(testing, range(num_prob))
X_test = np.array(data)
np.save('data3_test.npy', X_test)