contributors: @GitYCC
-
Method:
-
Margin Boundary: Norm-Softmax, SphereFace, CosFace and ArcFace
-
loss:
-
equations of margin boundary
- given two-class problem:
$Class1$ and$Class2$ - according to above loss function (4), the boundary is where two scores from
$Class1$ and$Class2$ are equal. $$ For\ Class1,\ s\cdot(cos(m_1\theta_1+m_2)-m_3)=s\cdot cos(\theta_2) $$ - Norm-Softmax:
$cos\theta_1-cos\theta_2=0\Rightarrow \theta_1-\theta_2=0$ - SphereFace:
$cos(m_1\theta_1)-cos\theta_2=0\Rightarrow m_1\theta_1-\theta_2=0$ - CosFace:
$cos\theta_1-m_3-cos\theta_2=0\Rightarrow cos\theta_1-cos\theta_2-m_3=0$ - ArcFace:
$cos(\theta_1+m_2)-cos\theta_2=0\Rightarrow \theta_1-\theta_2+m_2=0$
- given two-class problem:
-
figures of margin boundary
-
-
Results