-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevalution.py
86 lines (64 loc) · 2.27 KB
/
evalution.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
import os
import math
import time
import json
import random
from try_sqs_with_attension import Seq2SeqModel
import tensorflow as tf
from reader import reader
def decode(config):
tf.reset_default_graph()
config['max_decode_step'] = 500
reader_class = reader(config)
path = os.getcwd()
model_path = config['model_dir']
model = Seq2SeqModel(config, 'decode')
init_op = tf.global_variables_initializer()
with tf.Session() as sess:
sess.run(init_op)
saver =tf.train.Saver()
model = Seq2SeqModel(config, 'decode')
if tf.train.checkpoint_exists(model_path):
print('Reloading model parameters..')
#model.restore(sess, model_path)
saver.restore(sess, tf.train.latest_checkpoint(model_path))
else:
raise ValueError('No such file:[{}]'.format(model_path))
possible_batch_test = int(reader_class.test_len/config['batch_size'])
default_path = os.path.abspath(os.pardir)
data_path = os.path.join(default_path, 'data')
src_dict = os.path.join(data_path, config['src_dict'])
tgt_dict = os.path.join(data_path, config['tgt_dict'])
with open(src_dict) as f:
ques_dict = json.load(f)
with open(tgt_dict) as f:
ans_dict = json.load(f)
ans_id_word = dict(zip(list(ans_dict.values()),list(ans_dict.keys())))
ques_id_word = dict(zip(list(ques_dict.values()),list(ques_dict.keys())))
print(list(ans_id_word.keys())[:10])
for idx in range(2):
source, source_len,target, target_len =reader_class.get_without_fixed_len_test()
predicted_ids = model.predict(sess, encoder_inputs=source,
encoder_inputs_length=source_len)
for j in range(32):
ques = ''
for i in range(source_len[j]):
word = source[j][i]
ques+= ques_id_word[word] + ' '
actual_ans = ''
for i in range(target_len[j]):
word = target[j][i]
actual_ans+= ans_id_word[word] + ' '
ans_1 = ''
ans_2 = ''
for i in predicted_ids[j]:
if i[0] != 0:
ans_1 += ans_id_word[i[0]]+ ' '
if i[1] != 0:
ans_2 += ans_id_word[i[1]]+ ' '
print('question : {} \nActual_answer: {} \ngenerated_answer_1 : {} \ngenerated_answer_2 : {}'.format(ques, actual_ans, ans_1, ans_2))
print('\n------------------------------------------\n')
if __name__ == '__main__':
with open('config.json') as f:
config = json.load(f)
decode(config)