forked from ghl-wang/LFA_GUI
-
Notifications
You must be signed in to change notification settings - Fork 1
/
main.py
460 lines (404 loc) · 23.5 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
import os
import tkinter as tk
import tkinter.ttk as ttk
from ttkwidgets import TickScale
from PIL import Image, ImageTk
import pandas as pd
from tkinter import Menu, Label, Toplevel, Entry, filedialog, Button, simpledialog, messagebox
import numpy as np
import matplotlib.pyplot as plt
from scipy.signal import savgol_filter,find_peaks
# class popupWindow(object):
# value_global=""
# def __init__(self, master):
# self.top=Toplevel(master)
# self.top.columnconfigure(0, weight=1)
# self.top.columnconfigure(1,weight=3)
# self.value=""
# self.l=Label(self.top,text="Sample Label")
# self.l.grid(column=0,row=0,sticky=tk.W, padx=5, pady=5)
# self.e=Entry(self.top)
# self.e.grid(column=1, row=0, sticky=tk.E, padx=5, pady=5)
# self.b=Button(self.top,text='Ok',command=self.cleanup)
# self.b.grid(column=1, row=3, sticky=tk.E, padx=5, pady=5)
# def cleanup(self):
# self.value=self.e.get()
# popupWindow.value_global=self.value
# self.top.destroy()
class MousePositionTracker(tk.Frame):
""" Tkinter Canvas mouse position widget. """
def __init__(self, app, root):
# self.canvas = app.canvas
self.root = root
self.app = app
self.width = self.app.canvas.winfo_width()
self.height = self.app.canvas.winfo_height()
self.count = 0
# self.n = 3
self.reset()
# Options for areas outside rectanglar selection.
select_outside = dict(dash=(2, 2), fill='red', outline='', state=tk.HIDDEN, stipple='gray25')
# Separate options for area inside rectanglar selection.
select_inside = dict(dash=(2, 2), fill='', outline='white', state=tk.HIDDEN)
# Initial extrema of inner and outer rectangles.
i_min_x, i_min_y, i_max_x, i_max_y = 0, 0, 1, 1
o_min_x, o_min_y, o_max_x, o_max_y = 0, 0, self.width, self.height
self.rects = (
# Area *outside* selection (inner) rectangle.
self.app.canvas.create_rectangle(o_min_x, o_min_y, o_max_x, i_min_y, **select_outside),
self.app.canvas.create_rectangle(o_min_x, i_min_y, i_min_x, i_max_y, **select_outside),
self.app.canvas.create_rectangle(i_max_x, i_min_y, o_max_x, i_max_y, **select_outside),
self.app.canvas.create_rectangle(o_min_x, i_max_y, o_max_x, o_max_y, **select_outside),
# Inner rectangle.
self.app.canvas.create_rectangle(i_min_x, i_min_y, i_max_x, i_max_y, **select_inside)
)
self.df = pd.DataFrame()
# Create canvas cross-hair lines.
xhair_opts = dict(dash=(3, 2), fill='white', state=tk.HIDDEN)
self.lines = (self.app.canvas.create_line(0, 0, 0, self.height, **xhair_opts),
self.app.canvas.create_line(0, 0, self.width, 0, **xhair_opts))
def cur_selection(self):
return (self.start, self.end)
def begin(self, event):
self.hide()
self.start = (event.x, event.y) # Remember position (no drawing).
def update(self, event):
self.end = (event.x, event.y)
self._update(event)
# Current extrema of inner and outer rectangles.
i_min_x, i_min_y, i_max_x, i_max_y = self._get_coords()
o_min_x, o_min_y, o_max_x, o_max_y = 0, 0, self.width, self.height
# Update coords of all rectangles based on these extrema.
self.app.canvas.coords(self.rects[0], o_min_x, o_min_y, o_max_x, i_min_y),
self.app.canvas.coords(self.rects[1], o_min_x, i_min_y, i_min_x, i_max_y),
self.app.canvas.coords(self.rects[2], i_max_x, i_min_y, o_max_x, i_max_y),
self.app.canvas.coords(self.rects[3], o_min_x, i_max_y, o_max_x, o_max_y),
self.app.canvas.coords(self.rects[4], i_min_x, i_min_y, i_max_x, i_max_y),
for rect in self.rects: # Make sure all are now visible.
self.app.canvas.itemconfigure(rect, state=tk.NORMAL)
def _update(self, event):
# Update cross-hair lines.
self.app.canvas.coords(self.lines[0], event.x, 0, event.x, self.height)
self.app.canvas.coords(self.lines[1], 0, event.y, self.width, event.y)
self.show()
def _get_coords(self):
""" Determine coords of a polygon defined by the start and
end points one of the diagonals of a rectangular area.
"""
return (min((self.start[0], self.end[0])), min((self.start[1], self.end[1])),
max((self.start[0], self.end[0])), max((self.start[1], self.end[1])))
def reset(self):
self.start = self.end = None
def hide(self):
self.app.canvas.itemconfigure(self.lines[0], state=tk.HIDDEN)
self.app.canvas.itemconfigure(self.lines[1], state=tk.HIDDEN)
for rect in self.rects:
self.app.canvas.itemconfigure(rect, state=tk.HIDDEN)
def show(self):
self.app.canvas.itemconfigure(self.lines[0], state=tk.NORMAL)
self.app.canvas.itemconfigure(self.lines[1], state=tk.NORMAL)
def autodraw(self):
"""Setup automatic drawing; supports command option"""
self.reset()
self.app.canvas.bind("<Button-1>", self.begin)
self.app.canvas.bind("<B1-Motion>", self.update)
self.app.canvas.bind("<ButtonRelease-1>", self.quit)
def quit(self, event):
self.count+=1
self.sample_label = simpledialog.askstring("Input",
"Sample label",
parent=self.root,
initialvalue=self.count)
if self.sample_label:
self.process_ROI()
self.save_dataframe()
self.hide() # Hide cross-hairs.
self.reset()
def process_ROI(self):
channel_selections = self.app.channel_listbox.curselection()
if channel_selections == ():
messagebox.showerror('Error','No color channel is selected. Please select at least one color channel and try again.')
left, top = [i/self.app.canvas.aspect for i in self.start]
right, bottom = [i/self.app.canvas.aspect for i in self.end]
for i in range(int(self.app.n_lines.get())):
if self.app.line_vals[i].get() < top or self.app.line_vals[i].get() > bottom:
messagebox.showerror('Error',f'All line locators must be located in the rectangular ROI that you dragged. Reposition locator for line named "{self.app.line_name_vals[i].get()}" and re-drag your ROI.')
return
roi = self.app.img.crop((left, top, right, bottom))
roi_gray = roi.convert('L')
nleft, nright = self.calculate_LR_border(roi_gray)
roi_tight_gray = roi_gray.crop((nleft, 0, nright, roi.size[1]))
roi_tight_color = roi.crop((nleft, 0, nright, roi.size[1]))
channel_lines = [255-np.mean(np.asarray(roi_channel),axis=1) for roi_channel in [roi_tight_gray]+list(roi_tight_color.split())]
line_peaks = [self.find_lfa_peaks(channel_lines[i], top) for i in channel_selections]
file_title = self.file_label+'-'+str(self.count)+'-'+self.sample_label
save_path = os.path.normpath(os.path.join(self.dir_name, self.file_label, file_title+'.png'))
n_channels = len(line_peaks)
n_peaks = len(line_peaks[0][1])-1 # don't double-count background
color_channels = [self.app.COLOR_CHANNELS[i] for i in channel_selections]
features = [f'{self.app.line_name_vals[i].get()} peak' for i in range(n_peaks)] + ['background']
data_types = ['index', 'signal']
w, h = roi_tight_color.size
fig, axes = plt.subplots(nrows=1, ncols=n_channels+1, sharex=False, sharey=True, width_ratios=[1]*(n_channels+1), figsize=[6*w/h*(n_channels+1),6])
fig.suptitle(file_title)
axes[0].imshow(roi_tight_color, aspect='auto')
axes[0].set_xticks([])
axes[0].set_ylabel('distance (pixels)')
axes[0].set_anchor('E')
for i in range(int(self.app.n_lines.get())):
vals = [self.app.line_vals[i].get(),
self.app.line_vals[i].get() - float(self.app.interval_vals[i].get()),
self.app.line_vals[i].get() + float(self.app.interval_vals[i].get())
]
for i, val in enumerate(vals):
if val > 0 or val < len(line_peaks[0][0]):
axes[0].axhline(y = val - top, color = 'tab:gray', linestyle = '--' if i == 0 else '-')
for i in range(len(channel_selections)):
axes[i+1].plot(line_peaks[i][0], range(0,len(line_peaks[i][0])), color_channels[i])
axes[i+1].plot(line_peaks[i][2], line_peaks[i][1], 'o', color=color_channels[i])
axes[i+1].set(xlabel=f'{color_channels[i]} (signal)', xlim=[-25,255], xticks=[0,100,200])
axes[i+1].grid(True, which='major', color='lightgray')
pad = 0.1 # Padding around the edge of the figure
fig.subplots_adjust(hspace=0, wspace=0, left=pad, right=1-pad, top=1-pad, bottom=pad)
try:
fig.savefig(save_path)
except:
messagebox.showerror('Error',f'Cannot save plot image. Check for open image file with name {save_path}')
plt.close(fig)
data=[[' '.join([c,f,t]), line_peaks[i][k+1][j]] for i,c in enumerate(color_channels) for k,t in enumerate(data_types) for j,f in enumerate(features) if f+t!='backgroundindex']
df = pd.DataFrame([self.count]+[row[1] for row in data], index=['selection']+[row[0] for row in data], columns=[self.sample_label])
self.df=pd.concat([self.df, df], axis=1)
def calculate_LR_border(self, image):
arr=np.asarray(image)
mean_vertical=np.mean(arr,axis=0)
gradient=np.gradient(mean_vertical)
halfpoint=int(gradient.size//2)
left=np.argmin(gradient[:halfpoint])
right=np.argmin(gradient[halfpoint:])+halfpoint
return left, right
def find_lfa_peaks(self, line_profile, top):
N = int(self.app.n_lines.get())
filtered = savgol_filter(line_profile, 13, 2)
lowest_length = np.clip(len(filtered)//2, 1, 50)-1
lowest = np.sort(filtered)[0:lowest_length]
background = np.mean(lowest) #+ 3*np.std(lowest)
peaks_X,_=find_peaks(filtered)
peaks_Y=filtered[peaks_X]
X_intervals = [[int(line.get()-int(interval.get())-top), int(line.get()+int(interval.get())-top)] for line, interval in zip(self.app.line_vals[0:N], self.app.interval_vals[0:N])]
peaks_XY_max = [max([[X, Y] for (X,Y) in zip(peaks_X, peaks_Y) if X >= a and X <= b], key=lambda x:x[1], default=[None, None]) for a, b, in X_intervals]
peaks_XY_max.append([None, background])
peaks_X_by_location, peaks_Y_by_location = zip(*peaks_XY_max)
return filtered, list(peaks_X_by_location), list(peaks_Y_by_location)
def save_dataframe(self):
try:
self.df.to_csv(self.csv_save_path, index=True)
except:
return
def update_data(self):
self.count = 0
(self.dir_name, self.file_name) = os.path.split(self.app.img_path)
(self.file_label, self.file_ext) = os.path.splitext(self.file_name)
folder = os.path.normpath(os.path.join(self.dir_name, self.file_label))
if not os.path.exists(folder):
os.mkdir(folder)
self.csv_save_path = os.path.normpath(os.path.join(self.dir_name, self.file_label, self.file_label+'.csv'))
def resize(self):
self.width = self.app.canvas.winfo_width()
self.height = self.app.canvas.winfo_height()
class Application(tk.PanedWindow):
def __init__(self, parent, *args, **kwargs):
super().__init__(parent, *args, **kwargs)
self.parent = self.master
self.controls = ttk.LabelFrame(self, text='Controls', padding=10, width=150)
self.add(self.controls, padx=10, pady=10)
self.images = ttk.LabelFrame(self, text='Image')
self.add(self.images, padx=10, pady=10)
self.canvas = tk.Canvas(self.images)
self.canvas.aspect = 1.0
self.canvas.place(relheight=1.0, relwidth=1.0)
self.canvas.bind("<Configure>", self.resize_image)
self.img_path = "./front.png"
self.img = Image.open(self.img_path)
self.img_tk = ImageTk.PhotoImage(self.img)
self.img_container=self.canvas.create_image(0, 0, image=self.img_tk, anchor=tk.NW)
# Create mouse position tracker that uses the function.
self.posn_tracker = MousePositionTracker(self, self.parent)
self.posn_tracker.autodraw()
self.NUM_LINES = 3
self.MAX_LINES = 4
self.COLOR_CHANNELS = ['red', 'green', 'blue', 'gray']
self.auto_rectangles = []
self.create_controls()
def create_controls(self):
self.n_lines = tk.StringVar()
self.n_lines.set(self.NUM_LINES) # set default number of controls on this line
self.n_lines.trace_add('write', self.update_line_selection)
self.open = ttk.Button(self.controls,
command=self.open_file,
text='Open image file...')
self.analyze = ttk.Button(self.controls,
command=self.auto_analysis,
text='Start auto-analysis...')
self.channel_choices = tk.StringVar(value=self.COLOR_CHANNELS)
self.channel_listbox = tk.Listbox(self.controls,
listvariable=self.channel_choices,
selectmode="multiple",
exportselection=0,
height=0)
self.channel_listbox.selection_set(0, len(self.channel_choices.get()))
self.lines_entry = ttk.Entry(self.controls,
textvariable=self.n_lines
)
self.line_name_vals = [tk.StringVar(self,
'line '+str(i+1))
for i in range(self.MAX_LINES)]
self.line_names = [ttk.Entry(self.controls,
textvariable=self.line_name_vals[i])
for i in range(self.MAX_LINES)]
self.line_vals = [tk.IntVar(self, 1) for i in range(self.MAX_LINES)]
self.line_scales = [TickScale(self.controls,
command=lambda value, index=i: self.update_scales(value, index),
variable=self.line_vals[i],
from_=1,
orient=tk.VERTICAL,
to=self.img.height,
showvalue=True,
resolution=1,
length=100,
labelpos=tk.W)
for i in range(self.MAX_LINES)]
self.line_spinboxes = [ttk.Spinbox(self.controls,
command=lambda value=None, index=i: self.update_scales(value, index),
from_=1,
to=self.img.height,
textvariable=self.line_vals[i],
width=5)
for i in range(self.MAX_LINES)]
self.interval_vals = [tk.StringVar(self, 15) for _ in range(self.MAX_LINES)]
self.interval_spinboxes = [ttk.Spinbox(self.controls,
command=lambda value=None, index=i: self.update_scales(value, index),
from_=1,
to=100,
textvariable=self.interval_vals[i],
width=5)
for i in range(self.MAX_LINES)]
self.lines = [self.canvas.create_line(0,
scale.get(),
self.canvas.winfo_width(),
scale.get())
for scale in self.line_scales]
self.rectangles = [self.canvas.create_rectangle(0,
max(0,
self.line_scales[i].get() - float(self.interval_spinboxes[i].get())),
self.canvas.winfo_width(),
min(self.canvas.winfo_height(),
self.line_scales[i].get() + float(self.interval_spinboxes[i].get())),
fill='gray',
stipple='gray25')
for i in range(self.MAX_LINES)]
n = 0
self.open.grid(column=0, row=n, columnspan=2, sticky=tk.EW)
n += 1
self.analyze.grid(column=0, row=n, columnspan=2, sticky=tk.EW)
n += 1
tk.Frame(self.controls, bd=10, height=4, background='black').grid(row=n, columnspan=2, sticky=tk.EW)
n += 1
tk.Label(self.controls, text='(Un)select color channels').grid(column=0, row=n, columnspan=2, sticky=tk.EW)
n += 1
self.channel_listbox.grid(column=0, row=n, columnspan=2, sticky=tk.EW)
n += 1
tk.Frame(self.controls, bd=10, height=4, background='black').grid(row=n, columnspan=2, sticky=tk.EW)
n += 1
tk.Label(self.controls, text='Select no. of lines (1-4)').grid(column=0, row=n, columnspan=2, sticky=tk.EW)
n += 1
self.lines_entry.grid(column=0, row=n, columnspan=2, sticky=tk.EW)
n += 1
tk.Frame(self.controls, bd=10, height=4, background='black').grid(row=n, columnspan=2, sticky=tk.EW)
n += 1
tk.Label(self.controls, text='Label and locate line(s)').grid(column=0, row=n, columnspan=2, sticky=tk.EW)
n += 1
[self.line_names[i].grid(column=0, row=n+3*i, columnspan=2, sticky=tk.EW) for i in range(self.NUM_LINES)]
n += 1
[self.line_spinboxes[i].grid(column=0, row=n+3*i, sticky=tk.NW) for i in range(self.NUM_LINES)]
[self.interval_spinboxes[i].grid(column=1, row=n+3*i, sticky=tk.NE) for i in range(self.NUM_LINES)]
[self.line_scales[i].grid(column=0, row=n+1+3*i, columnspan=2, sticky=tk.W) for i in range(self.NUM_LINES)]
def update_scales(self, val, i):
scale_val = float(self.line_scales[i].get())
spin_val = float(self.interval_spinboxes[i].get())
self.canvas.coords(self.lines[i], 0, int(self.canvas.aspect * scale_val), self.canvas.winfo_width(), int(self.canvas.aspect * scale_val))
self.canvas.coords(self.rectangles[i],
0,
max(0, self.canvas.aspect * (scale_val - spin_val)),
self.canvas.winfo_width(),
min(self.canvas.winfo_height(), self.canvas.aspect * (scale_val + spin_val)))
def resize_image(self, event): # Must accept these arguments.
N = int(self.n_lines.get())
c_w, i_w, c_h, i_h = self.canvas.winfo_width(), self.img.width, self.canvas.winfo_height(), self.img.height
self.canvas.aspect = c_w / i_w if c_w / i_w < c_h / i_h else c_h / i_h
self.img_tk = ImageTk.PhotoImage(self.img.resize((int(i_w * self.canvas.aspect), int(i_h * self.canvas.aspect)), Image.LANCZOS))
self.canvas.itemconfig(self.img_container, image=self.img_tk)
self.posn_tracker.resize()
[self.line_scales[i].configure(to=self.img.height) for i in range(N)]
[self.line_spinboxes[i].configure(to=self.img.height) for i in range(N)]
[self.canvas.delete(rectangle) for rectangle in self.auto_rectangles]
[self.update_scales(None, i) for i in range(N)]
def update_line_selection(self, callback_name, callback_index, callback_method):
if self.n_lines.get().isdigit():
N = int(self.n_lines.get())
if N > 0 and N < 5:
n = 10
[entry.grid_forget() for entry in self.line_names]
[scale_spinbox.grid_forget() for scale_spinbox in self.line_spinboxes]
[scale.grid_forget() for scale in self.line_scales]
[spinbox.grid_forget() for spinbox in self.interval_spinboxes]
[self.line_names[i].grid(column=0, row=n+3*i, columnspan=2) for i in range(N)]
n += 1
[self.line_spinboxes[i].grid(column=0, row=n+3*i) for i in range(N)]
[self.interval_spinboxes[i].grid(column=1, row=n+3*i) for i in range(N)]
[self.line_scales[i].grid(column=0, row=n+1+3*i) for i in range(N)]
self.resize_image(None)
def open_file(self, event=None):
N = int(self.n_lines.get())
self.img_path = filedialog.askopenfilename(defaultextension=".txt",
filetypes=[("Image files", "*.png"), ("Image files", "*.tif"), ("All Files", "*.*")])
print(f'{self.img_path}')
root.title(f'{os.path.basename(self.img_path)}')
try:
self.img = Image.open(self.img_path)
except:
return
self.resize_image(None)
[self.update_scales(None, i) for i in range(N)]
self.posn_tracker.update_data()
# custom control settings for testing code on NAATOS strip images
[self.line_name_vals[i].set(s) for i, s in enumerate(['FC', 'IPC', 'TB'])]
[self.line_vals[i].set(n) for i, n in enumerate([425, 485, 530])]
[self.update_scales(None, i) for i in range(N)]
[self.channel_listbox.selection_clear(i) for i in [1, 2, 3]]
def auto_analysis(self, event=None):
if self.img != None:
top = int(390*self.canvas.aspect)
bottom = int(560*self.canvas.aspect)
left = int(32*self.canvas.aspect)
right = int(120*self.canvas.aspect)
last = int(self.img.size[0]*self.canvas.aspect)
spacing = int(101*self.canvas.aspect)
left_list = [pos for pos in range(left, last, spacing)]
right_list = [pos for pos in range(right, last, spacing)]
self.auto_rectangles = [self.canvas.create_rectangle(L, top, R, bottom, outline='yellow') for L, R in zip(left_list, right_list)]
for L, R in zip(left_list, right_list):
if L < last:
self.posn_tracker.start = (L, top)
self.posn_tracker.end = (R, bottom)
rectangle = self.canvas.create_rectangle(L, top, R, bottom, outline='red')
self.posn_tracker.quit(None)
self.canvas.delete(rectangle)
if __name__ == '__main__':
root = tk.Tk()
root.title('Image Cropper')
root.state('zoomed')
root.minsize(1372, 600)
app = Application(root, orient=tk.HORIZONTAL, sashwidth=5)
app.place(anchor=tk.NW, relwidth=1.0, relheight=1.0)
app.update()
app.mainloop()