The havoc
package is a Go library designed to facilitate chaos testing within Kubernetes environments using Chaos Mesh. It offers a structured way to define, execute, and manage chaos experiments as code, directly integrated into Go applications or testing suites. This package simplifies the creation and control of Chaos Mesh experiments, including network chaos, pod failures, and stress testing on Kubernetes clusters.
- Chaos Object Management: Easily create, update, pause, resume, and delete chaos experiments using Go structures and methods.
- Lifecycle Hooks: Utilize chaos listeners to hook into lifecycle events of chaos experiments, such as creation, start, pause, resume, and finish.
- Support for Various Chaos Experiments: Create and manage different types of chaos experiments like NetworkChaos, IOChaos, StressChaos, PodChaos, and HTTPChaos.
- Chaos Experiment Status Monitoring: Monitor and react to the status of chaos experiments programmatically.
To use havoc
in your project, ensure you have a Go environment setup. Then, install the package using go get:
go get -u github.com/goplugin/plugin-testing-framework/havoc
Ensure your Kubernetes cluster is accessible and that you have Chaos Mesh installed and configured.
havoc
enhances chaos experiment observability through structured logging and Grafana annotations, facilitated by implementing the ChaosListener interface. This approach allows for detailed monitoring, debugging, and visual representation of chaos experiments' impact.
ChaosLogger
leverages the zerolog library to provide structured, queryable logging of chaos events. It automatically logs key lifecycle events such as creation, start, pause, and termination of chaos experiments, including detailed contextual information.
Instantiate ChaosLogger
and register it as a listener to your chaos experiments:
logger := havoc.NewChaosLogger()
chaos.AddListener(logger)
havoc/logger.go
contains default Logger
instance for the package.
SingleLineGrafanaAnnotator
is a ChaosListener
that annotates Grafana dashboards with chaos experiment events. This visual representation helps correlate chaos events with their effects on system metrics and logs.
Initialize SingleLineGrafanaAnnotator
with your Grafana instance details and register it alongside ChaosLogger
:
annotator := havoc.NewSingleLineGrafanaAnnotator(
"http://grafana-instance.com",
"grafana-access-token",
"dashboard-uid",
)
chaos.AddListener(annotator)
To create a chaos experiment, define the chaos object options, initialize a chaos experiment with NewChaos, and then call Create to start the experiment.
Here is an example of creating and starting a PodChaos experiment:
package main
import (
"context"
"github.com/goplugin/plugin-testing-framework/havoc"
"github.com/chaos-mesh/chaos-mesh/api/v1alpha1"
"sigs.k8s.io/controller-runtime/pkg/client"
"time"
)
func main() {
// Initialize dependencies
client, err := havoc.NewChaosMeshClient()
if err != nil {
panic(err)
}
logger := havoc.NewChaosLogger()
annotator := havoc.NewSingleLineGrafanaAnnotator(
"http://grafana-instance.com",
"grafana-access-token",
"dashboard-uid",
)
// Define chaos experiment
podChaos := &v1alpha1.PodChaos{ /* PodChaos spec */ }
chaos, err := havoc.NewChaos(havoc.ChaosOpts{
Object: podChaos,
Description: "Pod failure example",
DelayCreate: 5 * time.Second,
Client: client,
})
if err != nil {
panic(err)
}
// Register listeners
chaos.AddListener(logger)
chaos.AddListener(annotator)
// Start chaos experiment
chaos.Create(context.Background())
// Manage chaos lifecycle...
}
func TestChaosDON(t *testing.T) {
testDuration := time.Minute * 60
// Load test config
cfg := &config.MercuryQAEnvChaos{}
// Define chaos experiments and their schedule
k8sClient, err := havoc.NewChaosMeshClient()
require.NoError(t, err)
// Test 3.2: Disable 2 nodes simultaneously
podFailureChaos4, err := k8s_chaos.MercuryPodChaosSchedule(k8s_chaos.MercuryScheduledPodChaosOpts{
Name: "schedule-don-ocr-node-failure-4",
Description: "Disable 2 nodes (clc-ocr-mercury-arb-testnet-qa-nodes-3 and clc-ocr-mercury-arb-testnet-qa-nodes-4)",
DelayCreate: time.Minute * 0,
Duration: time.Minute * 20,
Namespace: cfg.ChaosNodeNamespace,
PodSelector: v1alpha1.PodSelector{
Mode: v1alpha1.AllMode,
Selector: v1alpha1.PodSelectorSpec{
GenericSelectorSpec: v1alpha1.GenericSelectorSpec{
Namespaces: []string{cfg.ChaosNodeNamespace},
ExpressionSelectors: v1alpha1.LabelSelectorRequirements{
{
Key: "app.kubernetes.io/instance",
Operator: "In",
Values: []string{
"clc-ocr-mercury-arb-testnet-qa-nodes-3",
"clc-ocr-mercury-arb-testnet-qa-nodes-4",
},
},
},
},
},
},
Client: k8sClient,
})
require.NoError(t, err)
// Test 3.3: Disable 3 nodes simultaneously
podFailureChaos5, err := k8s_chaos.MercuryPodChaosSchedule(k8s_chaos.MercuryScheduledPodChaosOpts{
Name: "schedule-don-ocr-node-failure-5",
Description: "Disable 3 nodes (clc-ocr-mercury-arb-testnet-qa-nodes-3, clc-ocr-mercury-arb-testnet-qa-nodes-4 and clc-ocr-mercury-arb-testnet-qa-nodes-5)",
DelayCreate: time.Minute * 40,
Duration: time.Minute * 20,
Namespace: cfg.ChaosNodeNamespace,
PodSelector: v1alpha1.PodSelector{
Mode: v1alpha1.AllMode,
Selector: v1alpha1.PodSelectorSpec{
GenericSelectorSpec: v1alpha1.GenericSelectorSpec{
Namespaces: []string{cfg.ChaosNodeNamespace},
ExpressionSelectors: v1alpha1.LabelSelectorRequirements{
{
Key: "app.kubernetes.io/instance",
Operator: "In",
Values: []string{
"clc-ocr-mercury-arb-testnet-qa-nodes-3",
"clc-ocr-mercury-arb-testnet-qa-nodes-4",
"clc-ocr-mercury-arb-testnet-qa-nodes-5",
},
},
},
},
},
},
Client: k8sClient,
})
require.NoError(t, err)
chaosList := []havoc.ChaosEntity{
podFailureChaos4,
podFailureChaos5,
}
for _, chaos := range chaosList {
chaos.AddListener(havoc.NewChaosLogger())
chaos.AddListener(havoc.NewSingleLineGrafanaAnnotator(cfg.GrafanaURL, cfg.GrafanaToken, cfg.GrafanaDashboardUID))
// Fail the test if the chaos object already exists
exists, err := havoc.ChaosObjectExists(chaos.GetObject(), k8sClient)
require.NoError(t, err)
require.False(t, exists, "chaos object already exists: %s. Delete it before starting the test", chaos.GetChaosName())
chaos.Create(context.Background())
}
t.Cleanup(func() {
for _, chaos := range chaosList {
// Delete chaos object if it still exists
chaos.Delete(context.Background())
}
})
// Simulate user activity/load for the duration of the chaos experiments
runUserLoad(t, cfg, testDuration)
}