-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
194 lines (161 loc) · 5.2 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
import os
import torch
import albumentations
import pretrainedmodels
import numpy as np
import pandas as pd
import torch.nn as nn
from apex import amp
from sklearn import metrics
from torch.nn import functional as F
from wtfml.data_loaders.image import ClassificationLoader
from wtfml.engine import Engine
from wtfml.utils import EarlyStopping
class SEResNext50_32x4d(nn.Module):
def __init__(self, pretrained="imagenet"):
super(SEResNext50_32x4d, self).__init__()
self.model = pretrainedmodels.__dict__[
"se_resnext50_32x4d"
](pretrained=pretrained)
self.out = nn.Linear(2048, 1)
def forward(self, image, targets):
bs, _, _, _ = image.shape
x = self.model.features(image)
x = F.adaptive_avg_pool2d(x, 1)
x = x.reshape(bs, -1)
out = self.out(x)
loss = nn.BCEWithLogitsLoss()(
out, targets.reshape(-1, 1).type_as(out)
)
return out, loss
def train(fold):
training_data_path = "/home/abhishek/workspace/melanoma/input/jpeg/train224/"
model_path = "/home/abhishek/workspace/melanoma-deep-learning"
df = pd.read_csv("/home/abhishek/workspace/melanoma/input/train_folds.csv")
device = "cuda"
epochs = 50
train_bs = 32
valid_bs = 16
mean = (0.485, 0.456, 0.406)
std = (0.229, 0.224, 0.225)
df_train = df[df.kfold != fold].reset_index(drop=True)
df_valid = df[df.kfold == fold].reset_index(drop=True)
train_aug = albumentations.Compose(
[
albumentations.Normalize(mean, std, max_pixel_value=255.0, always_apply=True),
]
)
valid_aug = albumentations.Compose(
[
albumentations.Normalize(mean, std, max_pixel_value=255.0, always_apply=True),
]
)
train_images = df_train.image_name.values.tolist()
train_images = [os.path.join(training_data_path, i + ".jpg") for i in train_images]
train_targets = df_train.target.values
valid_images = df_valid.image_name.values.tolist()
valid_images = [os.path.join(training_data_path, i + ".jpg") for i in valid_images]
valid_targets = df_valid.target.values
train_dataset = ClassificationLoader(
image_paths=train_images,
targets=train_targets,
resize=None,
augmentations=train_aug
)
train_loader = torch.utils.data.DataLoader(
train_dataset,
batch_size=train_bs,
shuffle=True,
num_workers=4
)
valid_dataset = ClassificationLoader(
image_paths=valid_images,
targets=valid_targets,
resize=None,
augmentations=valid_aug
)
valid_loader = torch.utils.data.DataLoader(
valid_dataset,
batch_size=valid_bs,
shuffle=False,
num_workers=4
)
model = SEResNext50_32x4d(pretrained="imagenet")
model.to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=1e-4)
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(
optimizer,
patience=3,
mode="max"
)
model, optimizer = amp.initialize(
model,
optimizer,
opt_level="O1",
verbosity=0
)
es = EarlyStopping(patience=5, mode="max")
for epoch in range(epochs):
training_loss = Engine.train(
train_loader,
model,
optimizer,
device,
fp16=True
)
predictions, valid_loss = Engine.evaluate(
train_loader,
model,
optimizer,
device
)
predictions = np.vstack((predictions)).ravel()
auc = metrics.roc_auc_score(valid_targets, predictions)
scheduler.step(auc)
print(f"epoch={epoch}, auc={auc}")
es(auc, model, os.path.join(model_path, f"model{fold}.bin"))
if es.early_stop:
print("early stopping")
break
def predict(fold):
test_data_path = "/home/abhishek/workspace/melanoma/input/jpeg/test224/"
model_path = "/home/abhishek/workspace/melanoma-deep-learning"
df_test = pd.read_csv("/home/abhishek/workspace/melanoma/input/test.csv")
df_test.loc[:, "target"] = 0
device = "cuda"
epochs = 50
test_bs = 16
mean = (0.485, 0.456, 0.406)
std = (0.229, 0.224, 0.225)
test_aug = albumentations.Compose(
[
albumentations.Normalize(mean, std, max_pixel_value=255.0, always_apply=True),
]
)
test_images = df_test.image_name.values.tolist()
test_images = [os.path.join(test_data_path, i + ".jpg") for i in test_images]
test_targets = df_test.target.values
test_dataset = ClassificationLoader(
image_paths=test_images,
targets=test_targets,
resize=None,
augmentations=test_aug
)
test_loader = torch.utils.data.DataLoader(
test_dataset,
batch_size=test_bs,
shuffle=False,
num_workers=4
)
model = SEResNext50_32x4d(pretrained="imagenet")
model.load_state_dict(torch.load(os.path.join(model_path, f"model{fold}.bin")))
model.to(device)
predictions = Engine.predict(
test_loader,
model,
device
)
return np.vstack((predictions)).ravel()
if __name__ == "__main__":
train(fold=0)
predict(fold=0)