-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathMrRandTree.py
executable file
·205 lines (187 loc) · 8.01 KB
/
MrRandTree.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
#!/usr/bin/env python3
# -*- coding: UTF-8 -*-
from Util import log
from Util import ORDER_DICT2,SCORE_DICT
from MrRandom import MrRandom
from MrGreed import MrGreed
from ScenarioGenerator.ScenarioGen import ScenarioGen
from MCTS.mcts import mcts
import copy,itertools,numpy,time
print_level=0
class GameState():
def __init__(self,cards_lists,fmt_scores,cards_on_table,play_for):
self.cards_lists=cards_lists
self.cards_on_table=cards_on_table
self.fmt_scores=fmt_scores
self.play_for=play_for
#decide cards_dicts, suit and pnext
self.cards_dicts=[MrGreed.gen_cards_dict(i) for i in self.cards_lists]
if len(self.cards_on_table)==1:
self.suit="A"
else:
self.suit=self.cards_on_table[1][0]
self.pnext=(self.cards_on_table[0]+len(self.cards_on_table)-1)%4
self.remain_card_num=sum([len(i) for i in self.cards_lists])
def getCurrentPlayer(self):
if (self.pnext-self.play_for)%2==0:
return 1
else:
return -1
def getPossibleActions(self):
return MrGreed.gen_legal_choice(self.suit,self.cards_dicts[self.pnext],self.cards_lists[self.pnext])
def takeAction(self,action):
#log(action)
neo_state=copy.deepcopy(self)
neo_state.cards_lists[neo_state.pnext].remove(action)
neo_state.cards_dicts[neo_state.pnext][action[0]].remove(action)
neo_state.remain_card_num-=1
neo_state.cards_on_table.append(action)
#log(neo_state.cards_on_table)
#input()
assert len(neo_state.cards_on_table)<=5
if len(neo_state.cards_on_table)<5:
neo_state.pnext=(neo_state.pnext+1)%4
if len(neo_state.cards_on_table)==2:
neo_state.suit=neo_state.cards_on_table[1][0]
else:
#decide pnext
score_temp=-1024
for i in range(4):
if neo_state.cards_on_table[i+1][0]==neo_state.cards_on_table[1][0] and ORDER_DICT2[neo_state.cards_on_table[i+1][1]]>score_temp:
winner=i #in relative order
score_temp=ORDER_DICT2[neo_state.cards_on_table[i+1][1]]
neo_state.pnext=(neo_state.cards_on_table[0]+winner)%4
#clear scores
for c in neo_state.cards_on_table[1:]:
if c not in SCORE_DICT:
continue
neo_state.fmt_scores[neo_state.pnext][0]+=SCORE_DICT[c]
if c=='C10':
neo_state.fmt_scores[neo_state.pnext][2]=True
else:
neo_state.fmt_scores[neo_state.pnext][3]=True
if c[0]=='H':
neo_state.fmt_scores[neo_state.pnext][1]+=1
#clean table
neo_state.cards_on_table=[neo_state.pnext,]
neo_state.suit='A'
#log(neo_state.cards_on_table)
#log(neo_state.fmt_scores)
return neo_state
def isTerminal(self):
if self.remain_card_num==0:
return True
else:
return False
def getReward(self):
scores=[MrRandTree.clear_fmt_score(self.fmt_scores[(self.play_for+i)%4]) for i in range(4)]
"""scores_temp=copy.copy(scores)
c10=(i for i in range(4) if self.fmt_scores[i][2]).__next__()
if self.fmt_scores[c10][3]:
scores_temp[c10]/=2
else:
scores_temp[c10]=0
try:
assert sum(scores_temp)==-200
except:
log("%s %s"%(self.fmt_scores,scores))"""
#!TODO remember to change it later!
#return scores[0]-(scores[1]+scores[2]+scores[3])/3
return scores[0]+scores[2]-scores[1]-scores[3]
class MrRandTree(MrRandom):
N_SAMPLE=5
def clear_fmt_score(fmt_score):
"""
[0,0,False,False] stands for [score, #hearts, C10 flag, has score flag]
"""
s=fmt_score[0]
if fmt_score[1]==13:
s+=400
if fmt_score[2]:
if fmt_score[3]:
s*=2
else:
assert fmt_score[0]==0
assert fmt_score[1]==0
s=50
return s
def pick_a_card(self):
#确认桌上牌的数量和自己坐的位置相符
assert (self.cards_on_table[0]+len(self.cards_on_table)-1)%4==self.place
#utility datas
suit=self.decide_suit() #inherited from MrRandom
cards_dict=MrGreed.gen_cards_dict(self.cards_list)
#如果别无选择
if cards_dict.get(suit)!=None and len(cards_dict[suit])==1:
choice=cards_dict[suit][0]
if print_level>=1:
log("I have no choice but %s"%(choice))
return choice
if print_level>=1:
log("my turn: %s, %s"%(self.cards_on_table,self.cards_list))
fmt_scores=MrGreed.gen_fmt_scores(self.scores) #in absolute order, because self.scores is in absolute order
#log("fmt scores: %s"%(fmt_scores))
d_legal={c:0 for c in MrGreed.gen_legal_choice(suit,cards_dict,self.cards_list)} #dict of legal choice
sce_gen=ScenarioGen(self.place,self.history,self.cards_on_table,self.cards_list,number=MrRandTree.N_SAMPLE,METHOD1_PREFERENCE=100)
for cards_list_list in sce_gen:
cards_lists=[None,None,None,None]
cards_lists[self.place]=copy.copy(self.cards_list)
for i in range(3):
cards_lists[(self.place+i+1)%4]=cards_list_list[i]
if print_level>=1:
log("get scenario: %s"%(cards_lists))
cards_on_table_copy=copy.copy(self.cards_on_table)
gamestate=GameState(cards_lists,fmt_scores,cards_on_table_copy,self.place)
searcher=mcts(iterationLimit=200,explorationConstant=100)
searcher.search(initialState=gamestate)
for action,node in searcher.root.children.items():
if print_level>=1:
log("%s: %s"%(action,node))
d_legal[action]+=node.totalReward/node.numVisits
if print_level>=1:
log("d_legal: %s"%(d_legal))
input("press any key to continue...")
best_choice=MrGreed.pick_best_from_dlegal(d_legal)
return best_choice
@staticmethod
def family_name():
return 'MrRandTree'
def benchmark():
from MrRandom import MrRandom,Human
from MrIf import MrIf
from OfflineInterface import OfflineInterface
g=[MrGreed(room=0,place=i,name='greed%d'%(i)) for i in range(4)]
f=[MrIf(room=0,place=i,name="if%d"%(i)) for i in range(4)]
r=[MrRandom(room=0,place=i,name="random%d"%(i)) for i in range(4)]
rt=[MrRandTree(room=0,place=i,name='randtree%d'%(i)) for i in range(4)]
offlineinterface=OfflineInterface([f[0],g[1],f[2],g[3]],print_flag=False)
N1=1024;N2=2;stats=[]
log("%s vs. %s for %dx%d"%(offlineinterface.players[0].family_name(),offlineinterface.players[1].family_name(),N1,N2))
tik=time.time()
for k,l in itertools.product(range(N1),range(N2)):
if l==0:
cards=offlineinterface.shuffle()
else:
cards=cards[39:52]+cards[0:39]
offlineinterface.shuffle(cards=cards)
for i,j in itertools.product(range(13),range(4)):
offlineinterface.step()
"""if i==7 and j==2:
global print_level
print_level=1
offlineinterface.print_flag=True
log("start outputs")"""
stats.append(offlineinterface.clear())
offlineinterface.prepare_new()
if l==N2-1:
print("%4d"%(sum([j[0]+j[2]-j[1]-j[3] for j in stats[-N2:]])/N2),end=" ",flush=True)
#print("%s"%(stats[-1]),end=" ",flush=True)
tok=time.time()
log("time consume: %ds"%(tok-tik))
for i in range(4):
s_temp=[j[i] for j in stats]
log("%dth player: %.2f %.2f"%(i,numpy.mean(s_temp),numpy.sqrt(numpy.var(s_temp)/(len(s_temp)-1)),),l=2)
s_temp=[j[0]+j[2]-j[1]-j[3] for j in stats]
log("%.2f %.2f"%(numpy.mean(s_temp),numpy.sqrt(numpy.var(s_temp)/(len(s_temp)-1))))
if __name__=="__main__":
benchmark()