diff --git a/recipes/DocSummary.py b/recipes/DocSummary.py index fa4dbd427..476bd5da6 100644 --- a/recipes/DocSummary.py +++ b/recipes/DocSummary.py @@ -181,9 +181,6 @@ def run(self, state: dict) -> typing.Iterator[str | None]: case _: raise NotImplementedError(f"{chain_type} not implemented") - def get_raw_price(self, state: dict) -> float: - return self.price * state.get("num_outputs", 1) - MAP_REDUCE_PROMPT = """ {documents} diff --git a/recipes/GoogleGPT.py b/recipes/GoogleGPT.py index 48c512560..35d650acb 100644 --- a/recipes/GoogleGPT.py +++ b/recipes/GoogleGPT.py @@ -279,6 +279,3 @@ def run_v2( max_tokens=request.max_tokens, avoid_repetition=request.avoid_repetition, ) - - def get_raw_price(self, state: dict) -> float: - return self.price * state.get("num_outputs", 1) diff --git a/recipes/GoogleImageGen.py b/recipes/GoogleImageGen.py index a935e54cb..278128a37 100644 --- a/recipes/GoogleImageGen.py +++ b/recipes/GoogleImageGen.py @@ -238,6 +238,3 @@ def render_example(self, state: dict): def preview_description(self, state: dict) -> str: return "Enter a Google Image Search query + your Img2Img text prompt describing how to alter the result to create a unique, relevant ai generated images for any search query." - - def get_raw_price(self, state: dict) -> float: - return super().get_raw_price(state) * state.get("num_outputs", 1) diff --git a/recipes/SmartGPT.py b/recipes/SmartGPT.py index 10c4a3fe7..0aabcfefb 100644 --- a/recipes/SmartGPT.py +++ b/recipes/SmartGPT.py @@ -204,9 +204,6 @@ def render_steps(self): def preview_description(self, state: dict) -> str: return "SmartGPT is a cutting-edge AI technology that can be used to generate natural language responses to any given input. We have combined the power of [CoT](https://arxiv.org/abs/2305.02897), [Reflexion](https://arxiv.org/abs/2303.11366) & [DERA](https://arxiv.org/abs/2303.17071) into one pipeline so that you can use ChatGPT to its full potential! Input your prompt + a reflection/research prompt + a resolver prompt to use SmartGPT for enhanced text generation, natural language and incredible question-answer results." - def get_raw_price(self, state: dict) -> float: - return self.price * state.get("num_outputs", 1) - def answers_as_prompt(texts: list[str], sep="\n\n") -> str: return sep.join( diff --git a/recipes/Text2Audio.py b/recipes/Text2Audio.py index 5140fd2c2..f7ddf5aab 100644 --- a/recipes/Text2Audio.py +++ b/recipes/Text2Audio.py @@ -140,9 +140,6 @@ def render_example(self, state: dict): def preview_description(self, state: dict) -> str: return "Generate AI Music with text instruction prompts. AudiLDM is capable of generating realistic audio samples by process any text input. Learn more [here](https://huggingface.co/cvssp/audioldm-m-full)." - def get_raw_price(self, state: dict) -> float: - return super().get_raw_price(state) * state.get("num_outputs", 1) - def _render_output(state): selected_models = state.get("selected_models", [])