-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathdata.py
173 lines (149 loc) · 5.84 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
from PIL import Image
import os
import os.path
import numpy as np
from collections import Counter
import torchvision.transforms as transforms
import os
import torch
from torch.utils.data import DataLoader, WeightedRandomSampler
def get_loader(source_path, target_path, evaluation_path,
batch_size=32, return_id=False, balanced=False):
data_train_transforms = transforms.Compose([
transforms.Resize((256, 256)),
transforms.RandomHorizontalFlip(),
transforms.RandomCrop(224),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
data_test_transforms = transforms.Compose([
transforms.Resize((256, 256)),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
source_folder = ImageFolder(os.path.join(source_path),
data_train_transforms,
return_id=return_id)
target_folder_train = ImageFolder(os.path.join(target_path),
transform=data_train_transforms,
return_paths=False, return_id=return_id)
eval_folder_test = ImageFolder(os.path.join(evaluation_path),
transform=data_test_transforms,
return_id=True)
if balanced:
freq = Counter(source_folder.labels)
class_weight = {x: 1.0 / freq[x] for x in freq}
source_weights = [class_weight[x] for x in source_folder.labels]
sampler = WeightedRandomSampler(source_weights,
len(source_folder.labels))
print("use balanced loader")
source_loader = torch.utils.data.DataLoader(
source_folder,
batch_size=batch_size,
sampler=sampler,
drop_last=False,
num_workers=4)
else:
source_loader = torch.utils.data.DataLoader(
source_folder,
batch_size=batch_size,
shuffle=True,
drop_last=False,
num_workers=4)
target_loader = torch.utils.data.DataLoader(
target_folder_train,
batch_size=batch_size,
shuffle=True,
drop_last=False,
num_workers=4)
test_loader = torch.utils.data.DataLoader(
eval_folder_test,
batch_size=batch_size,
shuffle=False,
num_workers=4)
return source_loader, target_loader, test_loader
IMG_EXTENSIONS = [
'.jpg', '.JPG', '.jpeg', '.JPEG',
'.png', '.PNG', '.ppm', '.PPM', '.bmp', '.BMP',
]
def is_image_file(filename):
return any(filename.endswith(extension) for extension in IMG_EXTENSIONS)
def make_dataset(dir, class_to_idx):
images = []
dir = os.path.expanduser(dir)
for target in os.listdir(dir):
d = os.path.join(dir, target)
if not os.path.isdir(d):
continue
for root, _, fnames in sorted(os.walk(d)):
for fname in fnames:
if is_image_file(fname):
path = os.path.join(root, fname)
item = (path, class_to_idx[target])
images.append(item)
return images
def default_loader(path):
return Image.open(path).convert('RGB')
def make_dataset_nolist(image_list):
with open(image_list) as f:
image_index = [x.split(' ')[0] for x in f.readlines()]
with open(image_list) as f:
label_list = []
selected_list = []
for ind, x in enumerate(f.readlines()):
label = x.split(' ')[1].strip()
label_list.append(int(label))
selected_list.append(ind)
image_index = np.array(image_index)
label_list = np.array(label_list)
image_index = image_index[selected_list]
return image_index, label_list
class ImageFolder(torch.utils.data.Dataset):
"""A generic data loader where the images are arranged in this way: ::
root/dog/xxx.png
root/dog/xxy.png
root/dog/xxz.png
root/cat/123.png
root/cat/nsdf3.png
root/cat/asd932_.png
Args:
root (string): Root directory path.
transform (callable, optional): A function/transform that takes in an PIL image
and returns a transformed version. E.g, ``transforms.RandomCrop``
target_transform (callable, optional): A function/transform that takes in the
target and transforms it.
loader (callable, optional): A function to load an image given its path.
"""
def __init__(self, image_list, transform=None, target_transform=None, return_paths=False,
loader=default_loader, train=False, return_id=False):
imgs, labels = make_dataset_nolist(image_list)
self.imgs = imgs
self.labels = labels
self.transform = transform
self.target_transform = target_transform
self.loader = loader
self.return_paths = return_paths
self.return_id = return_id
self.train = train
def __getitem__(self, index):
"""
Args:
index (int): Index
Returns:
tuple: (image, target) where target is class_index of the target class.
"""
path = self.imgs[index]
target = self.labels[index]
img = self.loader(path)
img = self.transform(img)
if self.target_transform is not None:
target = self.target_transform(target)
if self.return_paths:
return img, target, path
elif self.return_id:
return img, target, index
else:
return img, target
def __len__(self):
return len(self.imgs)