-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain.py
94 lines (83 loc) · 2.53 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
import json
import random
import click
import spacy
from spacy.util import compounding
from spacy.util import minibatch
@click.command()
@click.option(
"--iterations",
type=int,
default=20,
help="Number of training iterations (default 20)",
)
@click.option("--drop", type=float, default=0.2, help="Default 0.2")
@click.option(
"--input-model",
default="en_core_web_sm",
help="Name of starting model (default en_core_web_sm)",
)
@click.option(
"--output-model",
type=click.Path(exists=False),
required=True,
help="Name of output model (directory)",
)
@click.option(
"--enable-existing-ner/--disable-existing-ner",
is_flag=True,
default=False,
help="Use an existing NER in the input model. Default is DO NOT.",
)
@click.option("--tok2vec", type=click.File("rb"))
@click.option("--verbose", is_flag=True, default=False)
@click.argument("training_file", type=click.File("r"), nargs=-1)
def main(
training_file,
input_model,
output_model,
enable_existing_ner,
iterations,
drop,
tok2vec,
verbose,
):
"""
Create an model to recognize named entities from 1 or more TRAINING_FILEs.
"""
training_data = []
for data_file in training_file:
data = json.load(data_file)
for entry in data:
training_data.append(entry)
if verbose:
print("Loaded {} entries".format(len(training_data)))
kwargs = dict()
if not enable_existing_ner:
kwargs["disable"] = "ner"
nlp = spacy.load(input_model, **kwargs)
if "ner" not in nlp.pipe_names:
ner = nlp.create_pipe("ner")
nlp.add_pipe(ner, last=True)
else:
ner = nlp.get_pipe("ner")
ner.add_label("S-Component")
pipe_exceptions = ["trf_tok2vec", "ner"]
other_pipes = [pipe for pipe in nlp.pipe_names if pipe not in pipe_exceptions]
with nlp.disable_pipes(*other_pipes):
optimizer = nlp.begin_training()
if tok2vec is not None:
ner.model.tok2vec.from_bytes(tok2vec.read())
tok2vec.close()
batch_sizes = compounding(4.0, 32.0, 1.001)
for itn in range(iterations):
losses = {}
random.shuffle(training_data)
batches = minibatch(training_data, size=batch_sizes)
for batch in batches:
text, annotations = zip(*batch)
nlp.update(text, annotations, drop=drop, sgd=optimizer, losses=losses)
print("Iteration {}: {}".format(itn, losses))
nlp.to_disk(output_model)
if __name__ == "__main__":
main()