-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathCresci15-GNN.py
133 lines (107 loc) · 5.04 KB
/
Cresci15-GNN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
import torch
import torch.nn as nn
import argparse
import time
from Dataset import Cresci15
from models import RGCN, GAT, GCN, SAGE, BotRGCN
from sklearn.metrics import accuracy_score, f1_score, precision_score, recall_score
import warnings
warnings.filterwarnings('ignore')
parser = argparse.ArgumentParser()
parser.add_argument('--relation_select', type=int, default=[0,1], nargs='+', help='selection of relations in the graph (0 1)')
parser.add_argument('--model', type=str, default='GCN', help='GCN, GAT, GraphSage, RGCN, BotRGCN')
parser.add_argument('--hidden_dimension', type=int, default=256, help='number of hidden units.')
parser.add_argument('--dropout', type=float, default=0.3, help='number of hidden units.')
parser.add_argument('--epochs', type=int, default=200, help='training epochs')
parser.add_argument('--lr', type=float, default=1e-3, help='initial learning rate.')
parser.add_argument('--weight_decay', type=float, default=5e-3, help='weight decay for optimizer.')
args = parser.parse_args()
print(args)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
def init_weights(m):
if type(m) == nn.Linear:
nn.init.kaiming_uniform_(m.weight)
def main():
dataset = Cresci15('./Dataset/Cresci-15')
data = dataset[0]
test_mask = data.test_mask
train_mask = data.train_mask
val_mask = data.val_mask
out_dim = 2
data = data.to(device)
embedding_size = data.x.shape[1]
relation_num = len(args.relation_select)
index_select_list = (data.edge_type == 100)
relation_dict = {
0:'followers',
1:'friends'
}
print('relation used:', end=' ')
for features_index in args.relation_select:
index_select_list = index_select_list + (features_index == data.edge_type)
print('{}'.format(relation_dict[features_index]), end=' ')
edge_index = data.edge_index[:, index_select_list]
edge_type = data.edge_type[index_select_list]
if args.model == 'RGCN':
model = RGCN(embedding_size, args.hidden_dimension, out_dim, relation_num, args.dropout).to(device)
elif args.model == 'GCN':
model = GCN(embedding_size, args.hidden_dimension, out_dim, relation_num, args.dropout).to(device)
elif args.model == 'GAT':
model = GAT(embedding_size, args.hidden_dimension, out_dim, relation_num, args.dropout).to(device)
elif args.model == 'GraphSage':
model = SAGE(embedding_size, args.hidden_dimension, out_dim, relation_num, args.dropout).to(device)
elif args.model == 'BotRGCN':
model = BotRGCN(embedding_size, args.hidden_dimension, out_dim, relation_num, args.dropout).to(device)
loss = nn.CrossEntropyLoss()
optimizer = torch.optim.AdamW(model.parameters(),
lr=args.lr, weight_decay=args.weight_decay)
def train(epoch):
model.train()
output = model(data.x, edge_index, edge_type)
loss_train = loss(output[data.train_mask], data.y[data.train_mask])
out = output.max(1)[1].to('cpu').detach().numpy()
label = data.y.to('cpu').detach().numpy()
acc_train = accuracy_score(out[train_mask], label[train_mask])
acc_val = accuracy_score(out[val_mask], label[val_mask])
optimizer.zero_grad()
loss_train.backward()
optimizer.step()
print('Epoch: {:04d}'.format(epoch + 1),
'loss_train: {:.4f}'.format(loss_train.item()),
'acc_train: {:.4f}'.format(acc_train.item()),
'acc_val: {:.4f}'.format(acc_val.item()), )
return acc_val
def test():
model.eval()
output = model(data.x, edge_index, edge_type)
loss_test = loss(output[data.test_mask], data.y[data.test_mask])
out = output.max(1)[1].to('cpu').detach().numpy()
label = data.y.to('cpu').detach().numpy()
acc_test = accuracy_score(out[test_mask], label[test_mask])
f1 = f1_score(out[test_mask], label[test_mask], average='macro')
precision = precision_score(out[test_mask], label[test_mask], average='macro')
recall = recall_score(out[test_mask], label[test_mask], average='macro')
return acc_test, loss_test, f1, precision, recall
model.apply(init_weights)
max_val_acc = 0
for epoch in range(args.epochs):
acc_val = train(epoch)
acc_test, loss_test, f1, precision, recall = test()
if acc_val > max_val_acc:
max_val_acc = acc_val
max_acc = acc_test
max_epoch = epoch + 1
max_f1 = f1
max_precision = precision
max_recall = recall
print("Test set results:",
"epoch= {:}".format(max_epoch),
"test_accuracy= {:.4f}".format(max_acc),
"precision= {:.4f}".format(max_precision),
"recall= {:.4f}".format(max_recall),
"f1_score= {:.4f}".format(max_f1)
)
if __name__ == "__main__":
t = time.time()
main()
print('total time:', time.time() - t)