-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexp_run.py
89 lines (70 loc) · 3.36 KB
/
exp_run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
import argparse
import yaml
import wandb
from dataset import load_dataset,TUData,OGB_Data
from train import train_model
from utils import seed_everything, record_result
import os
import torch
from train_dist import data_loader
from ogb.graphproppred import Evaluator
parser = argparse.ArgumentParser(description=' ')
parser.add_argument('--model', default='GMT', type=str)
parser.add_argument('--dataset', default='ogbg-molhiv', type=str,help='on which dataset')
parser.add_argument('--device', required=False, default=7, type=int, help='Device Number' )
parser.add_argument("--seed", type=int, default=1234, help="random seed (default: 1234)")
parser.add_argument("--repeat_time", type=int, default=10)
parser.add_argument("--wandb_record", action="store_true")
args = parser.parse_args()
seed_everything(args.seed)
config_path="./config/"+args.model+".yaml"
config=yaml.safe_load(open(config_path,'r'))
wandb_config = {
"epochs": int(config[args.dataset]["epochs"]),
"hidden_size":int(config[args.dataset]["hidden_size"]),
"learning_rate":float(config[args.dataset]["learning_rate"]),
"dropout":float(config[args.dataset]["dropout"]),
"batch_size":int(config[args.dataset]["batch_size"]),
"num_layers":int(config[args.dataset]["num_layers"]),
"weight_decay":float(config[args.dataset]["weight_decay"]),
}
for key in config[args.dataset].keys():
wandb_config[key] = config[args.dataset][key]
#only save data split in training
save_data=True
if __name__ == '__main__':
test_acc_list = []
for item in range(args.repeat_time):
project_name=args.model+'_'+args.dataset+"_model_repeat"
dataset=load_dataset(args.dataset,args.model,shuffle=True,)
dataloaders = data_loader(args.dataset, dataset, wandb_config['batch_size'])
if save_data:
folder="./model&dataset/"+args.dataset+"/"+args.model+'/'+'without_loss'
if not os.path.exists(folder):
os.makedirs(folder)
torch.save(dataset, os.path.join(folder, f'splited_{item}.pt'))
print("Shuffled Data saved to ",folder)
if args.wandb_record:
run = wandb.init(project=project_name,name="run"+str(item),config=wandb_config)
test_acc_record=train_model(args.model,
dataset,
dataloaders=dataloaders,
config=wandb_config,
device=args.device,
wandb_record=args.wandb_record,
save_model=True,
patience=30,#wandb.config.patience,
min_delta=0.005,#wandb.config.patience,
seed=args.seed,
fromstore=False,
evaluator=Evaluator(args.dataset) if args.dataset in OGB_Data else None,
task_type=dataset.task_type if args.dataset in OGB_Data else None,
repeat_time=item,
)
test_acc_list.append(test_acc_record)
if args.wandb_record:
wandb.finish()
test_acc_list = torch.tensor(test_acc_list)
res = f'{test_acc_list.mean()*100:.2f}±{test_acc_list.std()*100:.2f}'
print(f'Model: {args.model}, Dataset: {args.dataset}, Performance: {res}')
record_result(args.model, args.dataset, f'{res}', root='./results.csv')