-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpreprocess.py
635 lines (479 loc) · 17.2 KB
/
preprocess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
#preprocess all files in input_dir to output_dir
input_dir = "./input_pdb/"
output_dir = './pre_pdb/'
#load libraries
import os
import numpy as np
import pandas as pd
import torch
import esm
from tqdm import tqdm
import sys
from utils import cif_to_pdb
from pyrosetta import *
from pyrosetta.rosetta import *
from pyrosetta.teaching import *
from pyrosetta.rosetta.core.select.residue_selector import *
from pyrosetta.rosetta.core.simple_metrics.metrics import *
from pyrosetta.rosetta.core.simple_metrics.composite_metrics import *
from pyrosetta.rosetta.core.simple_metrics.per_residue_metrics import *
options = """
-beta
-ignore_unrecognized_res
-out:level 100
"""
#-out:level 100
pyrosetta.init(" ".join(options.split('\n')))
#required functions
def get_chain_seq(pose):
"""
Gets pose sequence by cahin
Args:
pose : pyrosetta pose
Returns:
chains (arr) : list of all sequences by internal ordering
"""
chains = [];
for ii in range(pose.num_chains()):
r = pose.chain_begin(ii+1)
c = pose.pdb_info().pose2pdb(r)
c = c.split(' ')
while '' in c:
c.remove('')
c = c[-1]
chains.append(c)
return chains
def get_protchainXYZ(pose,chain_num):
"""
Args:
pose : rosetta pose
chain_num (int): chain number (rosetta numbering)
Returns:
p_coor (arr): array of protein coordinates
p_label (arr): array with residue numbering (pose numbering)
"""
p_coor = []; #protein coordinates
p_label = []; # [RESIDUE_NUMBER] - rosetta numbering
for jj in range(pose.chain_begin(chain_num),pose.chain_end(chain_num)+1):
res_number = jj;
num_of_atoms = pose.residue(res_number).natoms()
for i in range(num_of_atoms):
atom_name = pose.residue(res_number).atom_name(i+1).strip()
if atom_name.count('H')> 0:
continue
if atom_name.startswith('V')> 0:
continue
curr = np.array(pose.residue(res_number).atom(i+1).xyz())
p_coor.append(curr)
p_label.append(res_number)
return p_coor, p_label
def get_chain_coor(pose,chain):
"""
function to get all CB and CA atom positions of all residues and their local frame of reference
Args:
pose : rosetta pose
chain : rosetta pose chain number (1,2,...)
Returns:
cb (arr): array of all CB coordinates - glycine just CA
ca (arr): array of all CA coordinates
frame (arr) : array of all local frame ~
x' = ca - n , y' = (ca - n) x (ca - c) , z' = x' x y'
ref (arr): array of PDB nomenclature for each residue
beta (arr): array of BFactors/PLDDTs of the structure
"""
start = pose.chain_begin(chain)
end = pose.chain_end(chain)
cb = np.zeros((end-start+1,3))
ca = np.zeros((end-start+1,3))
ref_pdb = []
beta = []
num_res = 0
frame = np.zeros((end-start+1,3,3))
for ii in range(start,end+1):
res = pose.residue(ii);
beta.append( float( pose.pdb_info().temperature(ii,1) ) )
num_res += 1
if (res.is_protein() == False):
return [],[],[],[];
ref_pdb.append(pose.pdb_info().pose2pdb(ii))
#get atom coordinates
xyz = res.xyz('N')
n = np.array([xyz[0],xyz[1],xyz[2]])
xyz = res.xyz('CA')
a = np.array([xyz[0],xyz[1],xyz[2]])
xyz = res.xyz('C')
c = np.array([xyz[0],xyz[1],xyz[2]])
b = a
name = res.name1();
if name != "G":
xyz = res.xyz('CB')
b = np.array([xyz[0],xyz[1],xyz[2]])
#get reference frame
ca_n = a - n;
ca_n /= np.linalg.norm(ca_n);
x_prime = ca_n;
ca_c = a - c;
ca_c /= np.linalg.norm(ca_c);
y_prime = np.cross(ca_n,ca_c);
y_prime /= np.linalg.norm(y_prime);
z_prime = np.cross(x_prime,y_prime);
z_prime /= np.linalg.norm(z_prime);
#explcitly define as
# [ -x'- ]
# ref = [ -y'- ]
# [ -z'- ]
ref = np.zeros((3,3));
ref[0,:] = x_prime;
ref[1,:] = y_prime;
ref[2,:] = z_prime;
#update
cb[ii-start,:] = b;
ca[ii-start,:] = a;
frame[ii-start,...] = ref
return cb, ca, frame, ref_pdb, beta
def rosetta_preprocess(f,output_dir):
"""
function preprocess a specific file using pyrosetta to get coordinates and sequence
outputs a file
Args:
f : pdb file (str)
output_dir : where the output file will be dumped to (str)
Returns:
out_fasta : fasta sequence of all chains (arr)
beta : Average B factor of entire structure
"""
pose = pose_from_file(f)
chains = get_chain_seq(pose)
p = f.split('/')[-1].split('.')[0] #get the name of the file
out_fasta = []
#go thru all protein chains
nc = pose.num_chains();
num_res = 0;
beta = [];
for c in range(1,nc+1):
#only protein chains allowed
if pose.residue(pose.chain_begin(c)).is_protein() == False:
continue;
coor, label = get_protchainXYZ(pose,c)
cb, ca, frame, ref_pdb, b = get_chain_coor(pose,c)
beta.append(b)
if len(cb) == 0:
continue;
seq = pose.chain_sequence(c)
n = p + "_" + str(c)
out_fasta.append([n,seq])
#output the coor file
np.savez(output_dir + n + ".npz",ca=ca,cb=cb,frame=frame,ref=ref_pdb)
return out_fasta, beta
def rosetta_highPL_preprocess(f):
"""
function preprocess a specific file using pyrosetta to get coordinates and sequence
outputs a file alongside the BFactors of each residue
Args:
f : pdb file (str)
output_dir : where the output file will be dumped to (str)
Returns:
All are arrays of arrays - each chain is the first entry
out_fasta (arr) : fasta sequence of all chains (arr)
ca_ (arr): array of all CA coordinates
cb_ (arr): array of all CB coordinates - glycine just CA
frame (arr) : array of all local frame ~
x' = ca - n , y' = (ca - n) x (ca - c) , z' = x' x y'
ref (arr): array of PDB nomenclature for each residue
beta (arr): array of BFactors/PLDDTs of the structure
"""
pose = pose_from_file(f)
chains = get_chain_seq(pose)
p = f.split('/')[-1].split('.')[0] #get the name of the file
#print(ii,len(pdbs),f)
out_fasta = []
#go thru all protein chains
nc = pose.num_chains();
num_res = 0;
ca_ = []
cb_ = []
f_ = []
ref_ = []
beta_ = []
for c in range(1,nc+1):
#only protein chains allowed
if pose.residue(pose.chain_begin(c)).is_protein() == False:
continue;
coor, label = get_protchainXYZ(pose,c)
cb, ca, frame, ref_pdb, b = get_chain_coor(pose,c)
beta_.append(b)
if len(cb) == 0:
continue;
seq = pose.chain_sequence(c)
n = p + "_" + str(c)
out_fasta.append([n,seq])
ca_.append(ca)
cb_.append(cb)
f_.append(frame)
ref_.append(ref_pdb)
return out_fasta, ca_,cb_,f_,ref_, beta_
def esm_preprocess(fa,model,alphabet,batch_converter,output_dir, high_pl = False):
"""
function preprocess a series of sequences with ESM
Args:
fa : fasta information [[name,seq]] (arr)
model : ESM-2 Model (model)
alphabet : ESM-2 alphabet (alphabet)
batch_converter : ESM-2 preprocessor (converter)
output_dir : where the output file will be dumped to (str)
Returns:
y : ESM-2 embedding
"""
y = []
for ii in range(len(fa)):
#print(ii,fa[ii])
batch_labels, batch_strs, batch_tokens = batch_converter([fa[ii]])
batch_lens = (batch_tokens != alphabet.padding_idx).sum(1)
# Extract per-residue representations (on CPU)
with torch.no_grad():
results = model(batch_tokens, repr_layers=[33], return_contacts=True)
token_representations = results["representations"][33]
seq_rep = []
for i, tokens_len in enumerate(batch_lens):
seq_rep.append(token_representations[i, 1 : tokens_len - 1])
y.append( seq_rep[0].numpy() )
if not high_pl:
#output to file
name = fa[ii][0]
np.save(output_dir + name + "_esm.npz",seq_rep[0].numpy())
return y;
def run_preprocess(high_plddt=False,plddt_cut=70):
"""
function preprocess all structures in the input directory (input_pdb/)
stores intermediate values in the output_dir (pre_pdb/)
Args:
high_plddt (bool) : only use high-resolution residues
plddt_cut (float) : cutoff value for resolution of residues
Returns:
void
Notes:
input_dir and output_dir are provided at the top of the file
If issues exist, please consult that
"""
#load ESM Model
model, alphabet = esm.pretrained.esm2_t33_650M_UR50D()
batch_converter = alphabet.get_batch_converter()
model.eval()
#get all the files
ls = os.listdir(input_dir)
print('\npreprocessing...')
if high_plddt:
for i in tqdm(range(len(ls))):
ii = ls[i]
if ('.pdb' in ii) or ('.cif' in ii):
#Make the cif file into a pdb file
if '.cif' in ii:
new_pdb = cif_to_pdb(input_dir + ii)
ii = new_pdb.split('/')[-1]
p = ii.split('/')[-1].split('.')[0] #get the name of the file
print(p)
#try:
if True:
fa, ca_,cb_,f_,ref_, beta_ = rosetta_highPL_preprocess(input_dir + ii)
es_ = esm_preprocess(fa,model,alphabet,batch_converter,output_dir, high_plddt)
num_res = 0
for kk in range(len(fa)):
ca,cb,fi,ref,es = [],[],[],[],[]
#print(fa[kk][1])
for jj in range(len(fa[kk][1])):
#print('\t',fa[kk][1][jj])
#only output the ones above plddt cutoff
if beta_[kk][jj] > plddt_cut:
num_res += 1;
ca.append(ca_[kk][jj])
cb.append(cb_[kk][jj])
fi.append(f_[kk][jj])
ref.append(ref_[kk][jj])
es.append(es_[kk][jj])
n = p + "_highPL_" + str(kk)
#print(len(fa[kk][1]),len(ca),len(cb),len(es))
np.savez(output_dir + n + ".npz",ca=np.array(ca),cb=np.array(cb),frame=np.array(fi),ref=np.array(ref))
np.save(output_dir + n + "_esm.npz.npy",es)
if num_res < 10:
print('Less than 10 residues were available for input protein structure above the requested plddt_cutoff of ' + str(plddt_cut))
print('Exiting...')
sys.exit(1)
#for i in range(len(fa)):
# fasta.write('>' + fa[i][0] + '|' + str(beta[i]) + '\n' + fa[i][1] + '\n')
#except:
# print("unable: ",ii)
#break
else:
fasta = open(output_dir + 'fasta.fa','a+')
for i in tqdm(range(len(ls))):
ii = ls[i]
if ('.pdb' in ii) or ('.cif' in ii):
#Make the cif file into a pdb file
if '.cif' in ii:
new_pdb = cif_to_pdb(input_dir + ii)
ii = new_pdb.split('/')[-1]
p = ii.split('/')[-1].split('.')[0] #get the name of the file
print('preprocessing:\t',p)
try:
fa, beta = rosetta_preprocess(input_dir + ii, output_dir)
_ = esm_preprocess(fa,model,alphabet,batch_converter,output_dir)
for i in range(len(fa)):
fasta.write('>' + fa[i][0] + '|' + str(beta[i]) + '\n' + fa[i][1] + '\n')
except:
print("unable: ",ii)
fasta.close()
print('making CSVs for file input')
#only ouptut files that haven't been made yet
ls = os.listdir(output_dir)
out = ''
cl = 'CLUST,PDB1|PDB2\n'
done = [];
for p in ls:
#only grab npz
if '.npz' not in p:
continue;
if 'esm' in p:
continue;
if 'DS_Store' in p:
continue;
#just double down
#remove all high_plddt when in basic mode
if not high_plddt:
if "highPL" in p:
continue;
#remove all non-high_plddt if in high mode
else:
if "highPL" not in p:
continue;
name = p.split('.')[0];
short_name = name[:name.rfind('_')]
#if 'highPL' in short_name:
# short_name = short_name[:short_name.rfind('_')+1]
# print(short_name)
if short_name in done:
continue;
done.append(short_name)
chains = []
for ii in ls:
if 'esm' in ii:
continue;
#remove all high_plddt when in basic mode
if not high_plddt:
if "highPL" in ii:
continue;
#remove all non-high_plddt if in high mode
else:
if "highPL" not in ii:
continue;
if short_name in ii:
n = ii.split('.')[0];
c = n[n.rfind('_'):];
chains.append(c)
print(n,c)
cl += name + '|' + name + '\n'
out += name + ',' + name + ','
for jj in range(len(chains)):
out += output_dir + short_name + chains[jj] + '.npz'
if jj + 1 == len(chains):
continue;
out += '|'
out += ','
for jj in range(len(chains)):
out += output_dir + short_name + chains[jj] + '_esm.npz.npy'
if jj + 1 == len(chains):
continue;
out += '|'
out += ','
out += ',,\n'
output_file = output_dir + 'dataset'
f = open(output_file + "_pdb.csv",'w+')
f.write(out)
f.close()
f = open(output_file + "_clust.csv",'w+')
f.write(cl)
f.close();
print('Outputed preprocessed files to: ', output_file + "_pdb and " + output_file + "_clust .csv")
def preprocess_single(file):
"""
function preprocess only a single structure in the input directory (input_pdb/)
stores intermediate values in the output_dir (pre_pdb/)
Args:
file (str) : directory to the file
Returns:
void
Notes:
input_dir and output_dir are provided at the top of the file
If issues exist, please consult that
"""
#load ESM Model
model, alphabet = esm.pretrained.esm2_t33_650M_UR50D()
batch_converter = alphabet.get_batch_converter()
model.eval()
fasta = open(output_dir + 'single_fasta.fa','a+')
print('preprocessing...')
p = file.split('/')[-1].split('.')[0] #get the name of the file
s = p;
print('file:',file,'\n',p)
fa, beta = rosetta_preprocess(file, output_dir)
esm_preprocess(fa,model,alphabet,batch_converter,output_dir)
for i in range(len(fa)):
fasta.write('>' + fa[i][0] + '|' + str(beta[i]) + '\n' + fa[i][1] + '\n')
fasta.close()
print('making CSVs for file input')
#only ouptut files that haven't been made yet
ls = os.listdir(output_dir)
out = ''
cl = 'CLUST,PDB1|PDB2\n'
done = [];
for p in ls:
if s not in p:
continue;
#only grab npz
if '.npz' not in p:
continue;
if 'esm' in p:
continue;
if 'DS_Store' in p:
continue;
#just double down
name = p.split('.')[0];
short_name = name[:name.rfind('_')]
if short_name in done:
continue;
done.append(short_name)
chains = []
for ii in ls:
#print(ii)
if 'esm' in ii:
continue;
if short_name in ii:
n = ii.split('.')[0];
c = n[n.rfind('_'):];
chains.append(c)
#print(chains)
cl += name + '|' + name + '\n'
out += name + ',' + name + ','
for jj in range(len(chains)):
out += output_dir + short_name + chains[jj] + '.npz'
if jj + 1 == len(chains):
continue;
out += '|'
out += ','
for jj in range(len(chains)):
out += output_dir + short_name + chains[jj] + '_esm.npz.npy'
if jj + 1 == len(chains):
continue;
out += '|'
out += ','
out += ',,\n'
output_file = output_dir + 'dataset_single'
f = open(output_file + "_pdb.csv",'w+')
f.write(out)
f.close()
f = open(output_file + "_clust.csv",'w+')
f.write(cl)
f.close();
print('Outputted preprocessed files to: ', output_file + "_pdb and " + output_file + "_clust .csv")
if __name__ == '__main__':
run_preprocess()
#return;