From 9c38c9ebbe4ad691482b6ae6b1fb75215be89b37 Mon Sep 17 00:00:00 2001 From: Yiran Date: Wed, 25 Dec 2024 16:59:38 +0800 Subject: [PATCH] fix: the configurations for Vector --- .../clients/vector-integration.md | 19 ----------- .../ingest-data/for-observerbility/vector.md | 34 ++++++++++++------- .../clients/vector-integration.md | 16 --------- .../ingest-data/for-observerbility/vector.md | 34 +++++++++++-------- 4 files changed, 42 insertions(+), 61 deletions(-) delete mode 100644 docs/db-cloud-shared/clients/vector-integration.md delete mode 100644 i18n/zh/docusaurus-plugin-content-docs/current/db-cloud-shared/clients/vector-integration.md diff --git a/docs/db-cloud-shared/clients/vector-integration.md b/docs/db-cloud-shared/clients/vector-integration.md deleted file mode 100644 index fa773c0f9..000000000 --- a/docs/db-cloud-shared/clients/vector-integration.md +++ /dev/null @@ -1,19 +0,0 @@ - -Vector is [a high performance observability data -pipeline](https://vector.dev). It has native support for GreptimeDB metrics data -sink. With vector, you can ingest metrics data from various sources, including -Prometheus, OpenTelemetry, StatsD and many more. -GreptimeDB can be used as a Vector Sink component to receive metrics. - - - -Execute Vector with: - -``` -vector -c sample.toml -``` - -For more configuration options, see [Vector GreptimeDB -Configuration](https://vector.dev/docs/reference/sinks/greptimedb/). - - diff --git a/docs/user-guide/ingest-data/for-observerbility/vector.md b/docs/user-guide/ingest-data/for-observerbility/vector.md index d965fdd18..781b02c00 100644 --- a/docs/user-guide/ingest-data/for-observerbility/vector.md +++ b/docs/user-guide/ingest-data/for-observerbility/vector.md @@ -3,16 +3,17 @@ keywords: [Vector, integration, configuration, data model, metrics] description: Instructions for integrating Vector with GreptimeDB, including configuration, data model mapping, and example configurations. --- -import DocTemplate from '../../../db-cloud-shared/clients/vector-integration.md' - - # Vector - +Vector is [a high performance observability data +pipeline](https://vector.dev). It has native support for GreptimeDB metrics data +sink. With vector, you can ingest metrics data from various sources, including +Prometheus, OpenTelemetry, StatsD and many more. +GreptimeDB can be used as a Vector Sink component to receive metrics. -
+## Collect metrics -## Integration +### Configuration A minimal configuration of when using your GreptimeDB instance can be: @@ -24,7 +25,7 @@ type = "host_metrics" [sinks.my_sink_id] inputs = ["in"] -type = "greptimedb" +type = "greptimedb_metrics" endpoint = ":4001" dbname = "" username = "" @@ -35,11 +36,16 @@ new_naming = true GreptimeDB uses gRPC to communicate with Vector, so the default port for the Vector sink is `4001`. If you have changed the default gRPC port when starting GreptimeDB with [custom configurations](/user-guide/deployments/configuration.md#configuration-file), use your own port instead. -
+Execute Vector with: + +``` +vector -c sample.toml +``` -
+For more configuration options, see [Vector GreptimeDB +Configuration](https://vector.dev/docs/reference/configuration/sinks/greptimedb_metrics/). -## Data Model +### Data Model The following rules are used when storing Vector metrics into GreptimeDB: @@ -54,6 +60,10 @@ The following rules are used when storing Vector metrics into GreptimeDB: - For AggregatedSummary metrics, the values of each percentile are stored in the `pxx` column, where xx is the percentile, and the `sum/count` columns are also stored; - For Sketch metrics, the values of each percentile are stored in the `pxx` column, where xx is the percentile, and the `min/max/avg/sum` columns are also stored; -
+## Collect logs + +### Configuration + +### Data Model + -
diff --git a/i18n/zh/docusaurus-plugin-content-docs/current/db-cloud-shared/clients/vector-integration.md b/i18n/zh/docusaurus-plugin-content-docs/current/db-cloud-shared/clients/vector-integration.md deleted file mode 100644 index 498bff093..000000000 --- a/i18n/zh/docusaurus-plugin-content-docs/current/db-cloud-shared/clients/vector-integration.md +++ /dev/null @@ -1,16 +0,0 @@ -Vector 是高性能的可观测数据管道。 -它原生支持 GreptimeDB 指标数据接收端。 -通过 Vector,你可以从各种来源接收指标数据,包括 Prometheus、OpenTelemetry、StatsD 等。 -GreptimeDB 可以作为 Vector 的 Sink 组件来接收指标数据。 - - - -启动 Vector: - -``` -vector -c sample.toml -``` - -请前往 [Vector GreptimeDB Configuration](https://vector.dev/docs/reference/sinks/greptimedb/) 查看更多配置项。 - - diff --git a/i18n/zh/docusaurus-plugin-content-docs/current/user-guide/ingest-data/for-observerbility/vector.md b/i18n/zh/docusaurus-plugin-content-docs/current/user-guide/ingest-data/for-observerbility/vector.md index bb18cfa4b..4bc6b6cde 100644 --- a/i18n/zh/docusaurus-plugin-content-docs/current/user-guide/ingest-data/for-observerbility/vector.md +++ b/i18n/zh/docusaurus-plugin-content-docs/current/user-guide/ingest-data/for-observerbility/vector.md @@ -3,18 +3,16 @@ keywords: [Vector, 数据写入, gRPC 通信, 数据模型, 配置示例] description: 介绍如何使用 Vector 将数据写入 GreptimeDB,包括最小配置示例和数据模型的映射规则。 --- -import DocTemplate from '../../../db-cloud-shared/clients/vector-integration.md' - - # Vector - - -[Vector](https://vector.dev/) 是一种高性能的可以帮助工程师控制可观测性数据的通道工具。我们的 Vector 集成页面在[这里](https://vector.dev/docs/reference/configuration/sinks/greptimedb/)。 +Vector 是高性能的可观测数据管道。 +它原生支持 GreptimeDB 指标数据接收端。 +通过 Vector,你可以从各种来源接收指标数据,包括 Prometheus、OpenTelemetry、StatsD 等。 +GreptimeDB 可以作为 Vector 的 Sink 组件来接收指标数据。 -
+## 收集指标 -## 集成 +### 配置 使用 GreptimeDB 的 Vector 集成的最小配置如下: @@ -26,7 +24,7 @@ type = "host_metrics" [sinks.my_sink_id] inputs = ["in"] -type = "greptimedb" +type = "greptimedb_metrics" endpoint = ":4001" dbname = "" username = "" @@ -37,11 +35,15 @@ new_naming = true GreptimeDB 使用 gRPC 与 Vector 进行通信,因此 Vector sink 的默认端口是 `4001`。 如果你在使用 [自定义配置](/user-guide/deployments/configuration.md#configuration-file) 启动 GreptimeDB 时更改了默认的 gRPC 端口,请使用你自己的端口。 -
+启动 Vector: -
+``` +vector -c sample.toml +``` -## 数据模型 +请前往 [Vector GreptimeDB Configuration](https://vector.dev/docs/reference/configuration/sinks/greptimedb_metrics/) 查看更多配置项。 + +### 数据模型 我们使用这样的规则将 Vector 指标存入 GreptimeDB: @@ -56,6 +58,10 @@ GreptimeDB 使用 gRPC 与 Vector 进行通信,因此 Vector sink 的默认端 - AggregatedSummary 类型,各个百分位数值点分别存入 `pxx` 列,其中 xx 是 quantile 数值,此外我们还会记录 `sum/count` 列; - Sketch 类型,各个百分位数值点分别存入 `pxx` 列,其中 xx 是 quantile 数值,此外我们还会记录 `min/max/avg/sum` 列; -
-
+## 收集日志 + +### 配置 + +### 数据模型 +