-
Notifications
You must be signed in to change notification settings - Fork 332
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
[bug] Possible memory leak when ingesting Nginx access logs generated by Vector at 100 QPS whether the data is stored as metrics or logs #3067
Comments
@tx991020 能否提供一下log_test表的建表SQL?还有“db”具体是哪个go library? |
CREATE TABLE IF NOT EXISTS "log" (
"host" STRING NULL,
"ts" TIMESTAMP(3) NOT NULL DEFAULT current_timestamp(),
"func" STRING NULL,
"log_level" STRING NULL,
"message" STRING NULL,
"service" STRING NULL,
TIME INDEX ("ts"),
PRIMARY KEY ("host")
) package main
import (
"context"
"database/sql"
"github.com/astaxie/beego/logs"
"github.com/didi/gendry/manager"
"strings"
"fmt"
"github.com/gin-gonic/gin"
_ "github.com/go-sql-driver/mysql"
"time"
)
var (
db *sql.DB
ch = make(chan *Message,1000)
)
func InitDB() {
var (
err error
)
db, err = manager.New("public", "", "", "192.168.0.220").Set(
manager.SetCharset("utf8"),
manager.SetAllowCleartextPasswords(true),
manager.SetInterpolateParams(true),
manager.SetTimeout(30*time.Second),
manager.SetReadTimeout(30*time.Second),
).Port(4002).Open(true)
if err != nil {
panic(err)
}
}
type Message struct {
Host string
Datetime string
Method string
Request string
Protocol string
Bytes int
Referer string
}
type Response struct {
Msg string `json:"msg"`
Status int `json:"status"`
Data interface{} `json:"data"`
}
func BulkInsert(data []*Message) error {
logs.Info(" log lens", len(data))
tx, err := db.Begin()
if err != nil {
fmt.Println("Error beginning transaction:", err)
return err
}
defer tx.Rollback()
stmt, err := tx.Prepare("INSERT INTO log (host, datetime, method, request, protocol, bytes, referer) VALUES (?, ?, ?, ?, ?, ?, ?)")
if err != nil {
fmt.Println("Error preparing statement:", err)
return err
}
defer stmt.Close()
// 批量值插入
values := []interface{}{}
for _, row := range data {
values = append(values, row.Host, row.Datetime, row.Method, row.Request, row.Protocol, row.Bytes, row.Referer)
}
query := "INSERT INTO log (host, datetime, method, request, protocol, bytes, referer) VALUES "
placeholders := "(?, ?, ?, ?, ?, ?, ?)"
queryValues := []string{}
for i := 0; i < len(data); i++ {
queryValues = append(queryValues, placeholders)
}
query += fmt.Sprintf("%s", strings.Join(queryValues, ","))
_, err = tx.Exec(query, values...)
if err != nil {
fmt.Println("Error executing bulk insert:", err)
return err
}
err = tx.Commit()
if err != nil {
fmt.Println("Error committing transaction:", err)
return err
}
return nil
}
func BatchTicker[T any](ctx context.Context, duration time.Duration, ch chan T, batchSize int, fn func([]T)) {
ticker := time.NewTicker(duration)
defer ticker.Stop()
var batch = make([]T, 0, batchSize)
for {
select {
case <-ctx.Done():
if len(batch) > 0 {
fn(batch)
}
return
case v, ok := <-ch:
if !ok { // closed
fn(batch)
return
}
batch = append(batch, v)
if len(batch) == batchSize { // full
fn(batch)
batch = make([]T, 0, batchSize) // reset
}
case <-ticker.C:
if len(batch) > 0 {
fn(batch)
batch = make([]T, 0, batchSize) // reset
}
}
}
}
func main() {
InitDB()
r := gin.New()
r.Use(gin.Recovery())
r.Use(gin.Logger())
go BatchTicker(context.Background(), 2*time.Second, ch, 200, func(data []*Message) {
err := BulkInsert(data)
if err != nil {
logs.Error(err)
}
})
r.POST("/receive", func(c *gin.Context) {
list := make([]*Message, 0)
err := c.BindJSON(&list)
if err != nil {
fmt.Println(err.Error())
c.JSON(400, Response{
Msg: "invalid request payload",
Status: -1,
})
return
}
for _, request := range list {
ch <- request
}
if err != nil {
fmt.Println("insert error", err.Error())
c.JSON(400, Response{
Msg: "insert error",
Status: -1,
})
return
}
c.JSON(200, gin.H{})
})
r.Run(":9100")
} 所有优化手段都用上了性能实在太差,qps 100/s 每2秒插入100条。go原生database/sql 40分钟,就是内存80M上涨到4.5G, 内存每秒上涨几M |
[api] [sources.nginx_logs] [sinks.http] |
@tx991020 非常感谢您的反馈!我现在测试一下 |
Hi tx991020, 关于内存持续增长的问题:vector 的 demo_logs 生成的数据中,host 几乎是随机生成的,在这种场景下如果以 host 作为 primary key 可能会导致 GreptimeDB 的内部 buffer 的内存效率大大降低,从而在未触发 flush 的情况下占用过多的内存。这个问题我们会在接下来几个版本中支持 append 表,规避掉现在这种 buffer 模式带来的问题。目前如果有类似的场景需求,可以规划一下 tag 列的设计,尽量避免出现 tag 列取值为随机值的情况。 Hi tx991020, regarding the memory consumption issue: in the data generated by demo_logs in vector, the "host" is almost randomly generated. In this scenario, using "host" as a primary key may greatly reduce the memory efficiency of GreptimeDB's internal buffer. We are going to support append-only table mode in the next several releases to address this issue. Currently if you have to use GreptimeDB in such scenario, you can carefully design the tag columns to avoid random values. |
关于这个问题的细节:目前 GreptimeDB 使用 To explain this issue in detail, currently GreptimeDB uses |
感谢你的反馈和关注,这里其实核心问题是因为目前 GreptimeDB 当前是仅为了 metrics 数据来设计的,host 加入 primary key 就会导致时间线在随机数据下急剧膨胀,当前引擎还不支持 append 模式(前面 @v0y4g3r 已提到,我们短期可以支持下),而是强制在 memtable 里组织 pirmary key 去重,这样就导致内存和插入性能在这个场景下的双低效。我们有计划在 2024 年加入 log 和 trace 引擎的单独支持,只是暂未提上议程。 Thank you for your feedback and attention. The core issue here is that GreptimeDB is currently designed only for metrics data. Adding a host as a primary key would cause the time series to expand dramatically under random data. The current engine does not support append mode and instead enforces deduplication of primary keys in the memtable, resulting in low efficiency in terms of memory and insertion performance in this scenario. We plan to add support for log and trace engines in 2024, but it has not been scheduled yet. |
单存metics 也有内存泄漏啊,我感觉还得好好检查下。 [sinks.greptime] |
@tx991020 我在本地试了一下,如果是source=host_metrics,sink=greptime,没发现内存泄漏,GreptimeDB的内存稳定在115MB左右。这是我的vector配置: data_dir = "/tmp/vector/data"
[api]
enabled = true
[sources.in]
type = "host_metrics"
scrape_interval_secs = 5
[sinks.greptime]
inputs = ["in"]
type = "greptimedb"
endpoint = "192.168.50.178:4001"
dbname = "public" vector启动就简单的 |
@tx991020 对于昨天测试的source=demo_logs,sink=http,http再通过prepare stmt写入GreptimeDB的场景,我们确实发现了内存占用大的问题。原因在于GreptimeDB当前的memtable实现是针对主键(primary key,或者说“tag”)较少的场景设计的。在source=demo_logs的测试场景中,“log"表的主键是”host“。这个”host“有非常之多,见下图: 一个简单的walkaround是将建表语句做如下修改: CREATE TABLE IF NOT EXISTS log (
host STRING NULL,
`datetime` Timestamp NOT NULL DEFAULT current_timestamp(),
`method` STRING NULL,
request STRING NULL,
protocol STRING NULL,
bytes int NULL,
referer STRING NULL,
TIME INDEX (datetime),
## 将原来的”PRIMARY KEY (host)“ 删掉
); 并且在您的http写入程序中使用_微秒_作为nginx log的”datetime“(我未能在vector的source=demo_logs的文档里发现他生成datetime的时间格式,所以估计vector只能以”秒“级别生成日志。而”秒“级别是不够的) |
现在是说单存metric 都内存泄露 |
greptime 是一个数据库,不是一个demo啊,不可能每次docker-compose up 起一个新的,跑几十分钟就完事。 得要一直运行,x现在的现象就是单存metrics都内存泄漏,内存占用过大,一个rust 写的数据库,表现的和一个Java,python写的一样,内存一直增长,数qps小,数据少,占用内存超大 |
@tx991020 我总结下现在的问题:
最后那个”???“我刚才启动了vector,将scrape_interval_secs设置为1(不能更少了,0.1的话vector会报错),观察几个小时再看。GreptimeDB是要成为一个严肃的数据库产品的,绝对不可能让用户每次都启动新的。非常感谢您的关注和反馈,我们会不断努力解决各种问题~ |
@tx991020 请问你测试的GreptimeDB版本是多少?在GreptimeDB启动时,日志第一行就是版本。比如
|
我猜测是我们内部这些 cache and buffer 引起的,默认都开的比较大 greptimedb/config/standalone.example.toml Lines 193 to 203 in 122b472
方便的话,除了执行 |
greptime:latest greptime服务已经停了 |
Sorry for that, we'll simulate this case and find out the root cause, I'll update this issue when we have progressed. |
We did a 4-day test trying to reproduce this problem with following vector config: [api]
enabled = true
address = "0.0.0.0:18686"
[sources.in]
type = "host_metrics"
scrape_interval_secs = 1
[sinks.greptime]
inputs = ["in"]
type = "greptimedb"
endpoint = "minipc-1:24001"
dbname = "public" Seems that we cannot reproduce this in our environment. Could you please tell us if any other operation was performed during the benchmark, like queries, restarts, etc. ? |
任何操作都没做,qps 基本是0,没人用,从80M涨到3G. 我要把greptime 部署到一个4G/8G的 边缘设备上, 内存超过1G都无法接受 |
Can you provide more information about your GreptimeDB instance, including:
您能提供有关您的GreptimeDB实例的更多信息吗,包括:
|
If there is no further information provided, I will temporarily close this issue. Please feel free to reopen it if you encounter any problems. |
你好,最近我们发布了 v0.11.1 版本,对写入时的内存占用有优化,欢迎再尝试下 目前表结构的设计,特别是主键(primary key)的设计对性能和资源占用的影响很大,对于日志可以推荐使用 append-only 表,并去掉主键 CREATE TABLE IF NOT EXISTS log (
host STRING NULL,
ts TIMESTAMP(3) NOT NULL DEFAULT current_timestamp(),
func STRING NULL,
log_level STRING NULL,
message STRING NULL,
service STRING NULL,
TIME INDEX (ts)
) with('append_mode'='true'); 我们也在持续优化性能,如果有问题欢迎向我们反馈 |
What type of bug is this?
Performance issue
What subsystems are affected?
Standalone mode
Minimal reproduce step
What did you expect to see?
内存应该文档在一个区间,不会一直增长,一直增长可能运行不了几小时,内存就爆了
What did you see instead?
几十分钟,内存一直从开始几十M,涨到3G多,一直增长不会停止。 docker-compose down 把greptime 停了,cpu 会降下,但是内存不会降下来。 插入性能比mysql还差很多,远远低于postgres
What operating system did you use?
Ubuntu 18.04
Relevant log output and stack trace
The text was updated successfully, but these errors were encountered: