forked from amazon-science/uniform-episodic-sampling
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodels.py
136 lines (99 loc) · 3.77 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
# Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License").
# You may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
class Flatten(torch.nn.Module):
def forward(self, x):
return x.view(x.size(0), -1)
def get_cnn4(num_classes):
def convbn(inplanes, planes):
return torch.nn.Sequential(
torch.nn.Conv2d(inplanes, planes, 3, padding=1),
torch.nn.BatchNorm2d(planes),
torch.nn.ReLU(True),
torch.nn.MaxPool2d(2)
)
class CNN4(torch.nn.Module):
def __init__(self, num_classes):
super(CNN4, self).__init__()
self.features = torch.nn.Sequential(
convbn(3, 64),
convbn(64, 64),
convbn(64, 64),
convbn(64, 64),
Flatten()
)
self.head = torch.nn.Linear(1600, num_classes)
def forward(self, x):
x = self.features(x)
x = self.head(x)
return x
return CNN4(num_classes)
def get_resnet12(num_classes):
class BasicBlock(torch.nn.Module):
def __init__(self, inplanes, planes):
super(BasicBlock, self).__init__()
def conv3x3(in_planes, out_planes):
return torch.nn.Conv2d(in_planes, out_planes, kernel_size=3,
padding=1, bias=False)
self.conv1 = conv3x3(inplanes, planes)
self.bn1 = torch.nn.BatchNorm2d(planes)
self.conv2 = conv3x3(planes, planes)
self.bn2 = torch.nn.BatchNorm2d(planes)
self.conv3 = conv3x3(planes, planes)
self.bn3 = torch.nn.BatchNorm2d(planes)
self.maxpool = torch.nn.MaxPool2d(2)
self.downsample = torch.nn.Sequential(
torch.nn.Conv2d(inplanes, planes, kernel_size=1, bias=False),
torch.nn.BatchNorm2d(planes),
)
self.relu = torch.nn.ReLU(True)
def forward(self, x):
residual = self.downsample(x)
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
out += residual
out = self.relu(out)
out = self.maxpool(out)
return out
class ResNet12(torch.nn.Module):
def __init__(self, num_classese):
super(ResNet12, self).__init__()
self.features = torch.nn.Sequential(
BasicBlock(3, 64),
BasicBlock(64, 128),
BasicBlock(128, 256),
BasicBlock(256, 512),
torch.nn.AvgPool2d(5),
Flatten()
)
self.head = torch.nn.Linear(512, num_classes)
for m in self.modules():
if isinstance(m, torch.nn.Conv2d):
torch.nn.init.kaiming_normal_(m.weight, mode='fan_out',
nonlinearity='relu')
def forward(self, x):
x = self.features(x)
x = self.head(x)
return x
return ResNet12(num_classes)
MODELS = {
'cnn4': get_cnn4,
'resnet12': get_resnet12
}