From 1f7b1fd195bdd4df3d847529ed1f6ca10c55fae7 Mon Sep 17 00:00:00 2001 From: Kevin Lewis Date: Mon, 1 Jul 2024 09:46:35 -0400 Subject: [PATCH] Refactored two functions --- hexrd/gridutil.py | 65 ++++++++++++++------------------------ hexrd/matrixutil.py | 52 ++++++++---------------------- tests/test_matrix_utils.py | 52 ++++++++++++++++++++++++++++++ 3 files changed, 88 insertions(+), 81 deletions(-) create mode 100644 tests/test_matrix_utils.py diff --git a/hexrd/gridutil.py b/hexrd/gridutil.py index f9c5cb70f..e5ce4bcd7 100644 --- a/hexrd/gridutil.py +++ b/hexrd/gridutil.py @@ -93,9 +93,9 @@ def cellIndices(edges, points_1d): def _fill_connectivity(out, m, n, p): i_con = 0 for k in range(p): + extra = k*(n+1)*(m+1) for j in range(m): for i in range(n): - extra = k*(n+1)*(m+1) out[i_con, 0] = i + j*(n + 1) + 1 + extra out[i_con, 1] = i + j*(n + 1) + extra out[i_con, 2] = i + j + n*(j+1) + 1 + extra @@ -122,12 +122,11 @@ def cellConnectivity(m, n, p=1, origin='ul'): if p > 1: nele = m*n*(p-1) - tmp_con3 = con.reshape(p, m*n, 4) + tmp_con3 = con.reshape((p, m*n, 4)) hex_con = [] for layer in range(p - 1): hex_con.append(np.hstack([tmp_con3[layer], tmp_con3[layer + 1]])) con = np.vstack(hex_con) - pass if origin.lower().strip() == 'll': con = con[:, ::-1] return con @@ -152,7 +151,6 @@ def cellCentroids(crd, con): def compute_areas(xy_eval_vtx, conn): areas = np.empty(len(conn)) for i in range(len(conn)): - c0, c1, c2, c3 = conn[i] vtx0x, vtx0y = xy_eval_vtx[conn[i, 0]] vtx1x, vtx1y = xy_eval_vtx[conn[i, 1]] v0x, v0y = vtx1x-vtx0x, vtx1y-vtx0y @@ -201,24 +199,23 @@ def computeArea(polygon): triv = np.array([[[0, i - 1], [0, i]] for i in range(2, n_vertices)]) area = 0 - for i in range(len(triv)): + for [s1, s2] in triv: tvp = np.diff( - np.hstack([polygon[triv[i][0], :], - polygon[triv[i][1], :]]), axis=0).flatten() + np.hstack([polygon[s1, :], + polygon[s2, :]]), axis=0).flatten() area += 0.5 * np.cross(tvp[:2], tvp[2:]) return area def make_tolerance_grid(bin_width, window_width, num_subdivisions, adjust_window=False, one_sided=False): - if bin_width > window_width: - bin_width = window_width + bin_width = min(bin_width, window_width) if adjust_window: window_width = np.ceil(window_width/bin_width)*bin_width if one_sided: ndiv = abs(int(window_width/bin_width)) grid = (np.arange(0, 2*ndiv+1) - ndiv)*bin_width - ndiv = 2*ndiv + ndiv *= 2 else: ndiv = int(num_subdivisions*np.ceil(window_width/float(bin_width))) grid = np.arange(0, ndiv+1)*window_width/float(ndiv) - 0.5*window_width @@ -228,46 +225,33 @@ def make_tolerance_grid(bin_width, window_width, num_subdivisions, def computeIntersection(line1, line2): """ compute intersection of two-dimensional line intersection + Returns the intersection point as an array of length 2. + If the lines are parallel (or equal) the function returns an empty array. this is an implementation of two lines: - line1 = [ [x0, y0], [x1, y1] ] - line1 = [ [x3, y3], [x4, y4] ] + line1 = [ [x1, y1], [x2, y2] ] + line2 = [ [x3, y3], [x4, y4] ] """ intersection = np.zeros(2) - l1 = np.array(line1) - l2 = np.array(line2) + [x1, y1] = line1[0] + [x2, y2] = line1[1] + [x3, y3] = line2[0] + [x4, y4] = line2[1] - det_l1 = det(l1) - det_l2 = det(l2) + denom = (x1-x2)*(y3-y4) - (y1-y2)*(x3-x4) + if denom == 0: + return [] - det_l1_x = det(np.vstack([l1[:, 0], np.ones(2)]).T) - det_l1_y = det(np.vstack([l1[:, 1], np.ones(2)]).T) + subterm1 = x1*y2 - y1*x2 + subterm2 = x3*y4 - y3*x4 - det_l2_x = det(np.vstack([l2[:, 0], np.ones(2)]).T) - det_l2_y = det(np.vstack([l2[:, 1], np.ones(2)]).T) - - denominator = det( - np.vstack([[det_l1_x, det_l1_y], [det_l2_x, det_l2_y]]) - ) - - if denominator == 0: - intersection = [] - else: - intersection[0] = det( - np.vstack( - [[det_l1, det_l1_x], [det_l2, det_l2_x]] - ) - ) / denominator - intersection[1] = det( - np.vstack( - [[det_l1, det_l1_y], [det_l2, det_l2_y]] - ) - ) / denominator + intersection[0] = (subterm1*(x3-x4) - subterm2*(x1-x2)) / denom + intersection[1] = (subterm1*(y3-y4) - subterm2*(y1-y2)) / denom return intersection @@ -295,6 +279,7 @@ def isinside(point, boundary, ccw=True): def sutherlandHodgman(subjectPolygon, clipPolygon): """ + https://en.wikipedia.org/wiki/Sutherland%E2%80%93Hodgman_algorithm """ subjectPolygon = np.array(subjectPolygon) clipPolygon = np.array(clipPolygon) @@ -332,7 +317,6 @@ def sutherlandHodgman(subjectPolygon, clipPolygon): outputList.append( computeIntersection(subjectLineSegment, clipBoundary) ) - pass outputList.append(curr_subjectVertex) elif isinside(prev_subjectVertex, clipBoundary): subjectLineSegment = np.vstack( @@ -341,9 +325,6 @@ def sutherlandHodgman(subjectPolygon, clipPolygon): outputList.append( computeIntersection(subjectLineSegment, clipBoundary) ) - pass prev_subjectVertex = curr_subjectVertex prev_clipVertex = curr_clipVertex - pass - pass return outputList diff --git a/hexrd/matrixutil.py b/hexrd/matrixutil.py index 12569a21b..b5000a109 100644 --- a/hexrd/matrixutil.py +++ b/hexrd/matrixutil.py @@ -262,42 +262,19 @@ def vecMVCOBMatrix(R): T = np.zeros((nrot, 6, 6), dtype='float64') - T[:, 0, 0] = R[:, 0, 0]**2 - T[:, 0, 1] = R[:, 0, 1]**2 - T[:, 0, 2] = R[:, 0, 2]**2 - T[:, 0, 3] = sqr2 * R[:, 0, 1] * R[:, 0, 2] - T[:, 0, 4] = sqr2 * R[:, 0, 0] * R[:, 0, 2] - T[:, 0, 5] = sqr2 * R[:, 0, 0] * R[:, 0, 1] - T[:, 1, 0] = R[:, 1, 0]**2 - T[:, 1, 1] = R[:, 1, 1]**2 - T[:, 1, 2] = R[:, 1, 2]**2 - T[:, 1, 3] = sqr2 * R[:, 1, 1] * R[:, 1, 2] - T[:, 1, 4] = sqr2 * R[:, 1, 0] * R[:, 1, 2] - T[:, 1, 5] = sqr2 * R[:, 1, 0] * R[:, 1, 1] - T[:, 2, 0] = R[:, 2, 0]**2 - T[:, 2, 1] = R[:, 2, 1]**2 - T[:, 2, 2] = R[:, 2, 2]**2 - T[:, 2, 3] = sqr2 * R[:, 2, 1] * R[:, 2, 2] - T[:, 2, 4] = sqr2 * R[:, 2, 0] * R[:, 2, 2] - T[:, 2, 5] = sqr2 * R[:, 2, 0] * R[:, 2, 1] - T[:, 3, 0] = sqr2 * R[:, 1, 0] * R[:, 2, 0] - T[:, 3, 1] = sqr2 * R[:, 1, 1] * R[:, 2, 1] - T[:, 3, 2] = sqr2 * R[:, 1, 2] * R[:, 2, 2] - T[:, 3, 3] = R[:, 1, 2] * R[:, 2, 1] + R[:, 1, 1] * R[:, 2, 2] - T[:, 3, 4] = R[:, 1, 2] * R[:, 2, 0] + R[:, 1, 0] * R[:, 2, 2] - T[:, 3, 5] = R[:, 1, 1] * R[:, 2, 0] + R[:, 1, 0] * R[:, 2, 1] - T[:, 4, 0] = sqr2 * R[:, 0, 0] * R[:, 2, 0] - T[:, 4, 1] = sqr2 * R[:, 0, 1] * R[:, 2, 1] - T[:, 4, 2] = sqr2 * R[:, 0, 2] * R[:, 2, 2] - T[:, 4, 3] = R[:, 0, 2] * R[:, 2, 1] + R[:, 0, 1] * R[:, 2, 2] - T[:, 4, 4] = R[:, 0, 2] * R[:, 2, 0] + R[:, 0, 0] * R[:, 2, 2] - T[:, 4, 5] = R[:, 0, 1] * R[:, 2, 0] + R[:, 0, 0] * R[:, 2, 1] - T[:, 5, 0] = sqr2 * R[:, 0, 0] * R[:, 1, 0] - T[:, 5, 1] = sqr2 * R[:, 0, 1] * R[:, 1, 1] - T[:, 5, 2] = sqr2 * R[:, 0, 2] * R[:, 1, 2] - T[:, 5, 3] = R[:, 0, 2] * R[:, 1, 1] + R[:, 0, 1] * R[:, 1, 2] - T[:, 5, 4] = R[:, 0, 0] * R[:, 1, 2] + R[:, 0, 2] * R[:, 1, 0] - T[:, 5, 5] = R[:, 0, 1] * R[:, 1, 0] + R[:, 0, 0] * R[:, 1, 1] + for i in range(3): + # Other two i values + i1, i2 = [k for k in range(3) if k!= i] + for j in range(3): + # Other two j values + j1, j2 = [k for k in range(3) if k!= j] + + T[:, i, j] = R[:, i, j] ** 2 + T[:, i, j + 3] = sqr2 * R[:, i, j1] * R[:, i, j2] + T[:, i + 3, j] = sqr2 * R[:, i1, j] * R[:, i2, j] + T[:, i + 3, j + 3] = ( + R[:, i1, j1] * R[:, i2, j2] + R[:, i1, j2] * R[:, i2, j1] + ) if nrot == 1: T = T.squeeze() @@ -562,7 +539,6 @@ def uniqueVectors(v, tol=1.0e-12): indep = np.hstack([True, tmpcmp > tol]) # independent values rowint = indep.cumsum() iv[np.ix_([row], tmpord)] = rowint - pass # # Dictionary sort from bottom up # @@ -577,8 +553,6 @@ def uniqueVectors(v, tol=1.0e-12): if any(ivSrt[:, col] != ivSrt[:, col - 1]): ivInd[nUniq] = col nUniq += 1 - pass - pass return vSrt[:, ivInd[0:nUniq]] diff --git a/tests/test_matrix_utils.py b/tests/test_matrix_utils.py new file mode 100644 index 000000000..3f9dd6622 --- /dev/null +++ b/tests/test_matrix_utils.py @@ -0,0 +1,52 @@ +import numpy as np + +from hexrd import matrixutil as mutil + +def test_vec_mv_cob_matrix(): + np.random.seed(0) + # Generate some random matrices + R = np.random.rand(20,3,3) * 2 - 1 + + T = np.zeros((len(R), 6, 6), dtype='float64') + sqr2 = np.sqrt(2) + # Hardcoded implementation + T[:, 0, 0] = R[:, 0, 0]**2 + T[:, 0, 1] = R[:, 0, 1]**2 + T[:, 0, 2] = R[:, 0, 2]**2 + T[:, 0, 3] = sqr2 * R[:, 0, 1] * R[:, 0, 2] + T[:, 0, 4] = sqr2 * R[:, 0, 0] * R[:, 0, 2] + T[:, 0, 5] = sqr2 * R[:, 0, 0] * R[:, 0, 1] + T[:, 1, 0] = R[:, 1, 0]**2 + T[:, 1, 1] = R[:, 1, 1]**2 + T[:, 1, 2] = R[:, 1, 2]**2 + T[:, 1, 3] = sqr2 * R[:, 1, 1] * R[:, 1, 2] + T[:, 1, 4] = sqr2 * R[:, 1, 0] * R[:, 1, 2] + T[:, 1, 5] = sqr2 * R[:, 1, 0] * R[:, 1, 1] + T[:, 2, 0] = R[:, 2, 0]**2 + T[:, 2, 1] = R[:, 2, 1]**2 + T[:, 2, 2] = R[:, 2, 2]**2 + T[:, 2, 3] = sqr2 * R[:, 2, 1] * R[:, 2, 2] + T[:, 2, 4] = sqr2 * R[:, 2, 0] * R[:, 2, 2] + T[:, 2, 5] = sqr2 * R[:, 2, 0] * R[:, 2, 1] + T[:, 3, 0] = sqr2 * R[:, 1, 0] * R[:, 2, 0] + T[:, 3, 1] = sqr2 * R[:, 1, 1] * R[:, 2, 1] + T[:, 3, 2] = sqr2 * R[:, 1, 2] * R[:, 2, 2] + T[:, 3, 3] = R[:, 1, 2] * R[:, 2, 1] + R[:, 1, 1] * R[:, 2, 2] + T[:, 3, 4] = R[:, 1, 2] * R[:, 2, 0] + R[:, 1, 0] * R[:, 2, 2] + T[:, 3, 5] = R[:, 1, 1] * R[:, 2, 0] + R[:, 1, 0] * R[:, 2, 1] + T[:, 4, 0] = sqr2 * R[:, 0, 0] * R[:, 2, 0] + T[:, 4, 1] = sqr2 * R[:, 0, 1] * R[:, 2, 1] + T[:, 4, 2] = sqr2 * R[:, 0, 2] * R[:, 2, 2] + T[:, 4, 3] = R[:, 0, 2] * R[:, 2, 1] + R[:, 0, 1] * R[:, 2, 2] + T[:, 4, 4] = R[:, 0, 2] * R[:, 2, 0] + R[:, 0, 0] * R[:, 2, 2] + T[:, 4, 5] = R[:, 0, 1] * R[:, 2, 0] + R[:, 0, 0] * R[:, 2, 1] + T[:, 5, 0] = sqr2 * R[:, 0, 0] * R[:, 1, 0] + T[:, 5, 1] = sqr2 * R[:, 0, 1] * R[:, 1, 1] + T[:, 5, 2] = sqr2 * R[:, 0, 2] * R[:, 1, 2] + T[:, 5, 3] = R[:, 0, 2] * R[:, 1, 1] + R[:, 0, 1] * R[:, 1, 2] + T[:, 5, 4] = R[:, 0, 0] * R[:, 1, 2] + R[:, 0, 2] * R[:, 1, 0] + T[:, 5, 5] = R[:, 0, 1] * R[:, 1, 0] + R[:, 0, 0] * R[:, 1, 1] + + T2 = mutil.vecMVCOBMatrix(R) + + assert np.allclose(T, T2) \ No newline at end of file