From c2eb4423353673bed90bb18c52c62f19678399b2 Mon Sep 17 00:00:00 2001 From: Zack Singer Date: Thu, 11 Jul 2024 13:26:13 -0400 Subject: [PATCH] Re-format with Black, cut out fluff --- hexrd/grainmap/nfutil.py | 1405 +++++++++++++++++++++----------------- 1 file changed, 764 insertions(+), 641 deletions(-) diff --git a/hexrd/grainmap/nfutil.py b/hexrd/grainmap/nfutil.py index fb3d326fa..cd79576a0 100644 --- a/hexrd/grainmap/nfutil.py +++ b/hexrd/grainmap/nfutil.py @@ -4,6 +4,8 @@ Also trying to minimize imports """ +from typing import Sequence + import argparse import contextlib import copy @@ -21,11 +23,13 @@ import matplotlib.pyplot as plt import yaml -# Import of image loading, this should probably be done properly with preprocessed frame-cache binaries +# Import of image loading, this should probably be done properly with +# preprocessed frame-cache binaries import scipy.ndimage as img -import skimage.filters as filters +from skimage import filters from skimage.morphology import dilation as ski_dilation + try: import imageio as imgio except ImportError: @@ -46,6 +50,7 @@ rank = 0 try: from mpi4py import MPI + comm = MPI.COMM_WORLD world_size = comm.Get_size() rank = comm.Get_rank() @@ -77,8 +82,13 @@ class ProcessController: track the results of the process as well as to provide clues of the progress of the process""" - def __init__(self, result_handler=None, progress_observer=None, ncpus=1, - chunk_size=100): + def __init__( + self, + result_handler=None, + progress_observer=None, + ncpus=1, + chunk_size=100, + ): self.rh = result_handler self.po = progress_observer self.ncpus = ncpus @@ -99,8 +109,12 @@ def finish(self, name): entry = self.timing.pop() assert name == entry[0] total = t - entry[2] - logging.info("%s took %8.3fs (%8.6fs per item).", - entry[0], total, total/entry[1]) + logging.info( + "%s took %8.3fs (%8.6fs per item).", + entry[0], + total, + total / entry[1], + ) def update(self, value): self.po.update(value) @@ -157,8 +171,9 @@ class ProgressBarProgressObserver: def start(self, name, count): from progressbar import ProgressBar, Percentage, Bar - self.pbar = ProgressBar(widgets=[name, Percentage(), Bar()], - maxval=count) + self.pbar = ProgressBar( + widgets=[name, Percentage(), Bar()], maxval=count + ) self.pbar.start() def update(self, value): @@ -181,6 +196,7 @@ def handle_result(self, key, value): def saving_result_handler(filename): """returns a result handler that saves the resulting arrays into a file with name filename""" + class SavingResultHandler: def __init__(self, file_name): self.filename = file_name @@ -192,7 +208,8 @@ def handle_result(self, key, value): def __del__(self): logging.debug("Writing arrays in %(filename)s", self.__dict__) try: - np.savez_compressed(open(self.filename, "wb"), **self.arrays) + with open(self.filename, "wb") as fout: + np.savez_compressed(fout, **self.arrays) except IOError: logging.error("Failed to write %(filename)s", self.__dict__) @@ -210,11 +227,13 @@ def checking_result_handler(filename): match. A FULL PASS will happen when all existing results match """ + class CheckingResultHandler: def __init__(self, reference_file): """Checks the result against those save in 'reference_file'""" - logging.info("Loading reference results from '%s'", reference_file) - self.reference_results = np.load(open(reference_file, 'rb')) + logging.info(f"Loading reference results from '{reference_file}'") + with open(reference_file, 'rb') as fin: + self.reference_results = np.load(fin) def handle_result(self, key, value): if key in ['experiment', 'image_stack']: @@ -236,8 +255,9 @@ def handle_result(self, key, value): value = value.T check_len = min(len(reference), len(value)) - test_passed = np.allclose(value[:check_len], - reference[:check_len]) + test_passed = np.allclose( + value[:check_len], reference[:check_len] + ) if not test_passed: msg = "'{0}': FAIL" @@ -257,15 +277,15 @@ def handle_result(self, key, value): return CheckingResultHandler(filename) - # ============================================================================= # %% OPTIMIZED BITS # ============================================================================= + # Some basic 3d algebra ======================================================= @numba.njit(nogil=True, cache=True) def _v3_dot(a, b): - return a[0]*b[0] + a[1]*b[1] + a[2]*b[2] + return a[0] * b[0] + a[1] * b[1] + a[2] * b[2] @numba.njit(nogil=True, cache=True) @@ -273,9 +293,9 @@ def _m33_v3_multiply(m, v, dst): v0 = v[0] v1 = v[1] v2 = v[2] - dst[0] = m[0, 0]*v0 + m[0, 1]*v1 + m[0, 2]*v2 - dst[1] = m[1, 0]*v0 + m[1, 1]*v1 + m[1, 2]*v2 - dst[2] = m[2, 0]*v0 + m[2, 1]*v1 + m[2, 2]*v2 + dst[0] = m[0, 0] * v0 + m[0, 1] * v1 + m[0, 2] * v2 + dst[1] = m[1, 0] * v0 + m[1, 1] * v1 + m[1, 2] * v2 + dst[2] = m[2, 0] * v0 + m[2, 1] * v1 + m[2, 2] * v2 return dst @@ -285,8 +305,8 @@ def _v3_normalized(src, dst): v0 = src[0] v1 = src[1] v2 = src[2] - sqr_norm = v0*v0 + v1*v1 + v2*v2 - inv_norm = 1.0 if sqr_norm == 0.0 else 1./np.sqrt(sqr_norm) + sqr_norm = v0 * v0 + v1 * v1 + v2 * v2 + inv_norm = 1.0 if sqr_norm == 0.0 else 1.0 / np.sqrt(sqr_norm) dst[0] = v0 * inv_norm dst[1] = v1 * inv_norm @@ -301,21 +321,22 @@ def _make_binary_rot_mat(src, dst): v1 = src[1] v2 = src[2] - dst[0, 0] = 2.0*v0*v0 - 1.0 - dst[0, 1] = 2.0*v0*v1 - dst[0, 2] = 2.0*v0*v2 - dst[1, 0] = 2.0*v1*v0 - dst[1, 1] = 2.0*v1*v1 - 1.0 - dst[1, 2] = 2.0*v1*v2 - dst[2, 0] = 2.0*v2*v0 - dst[2, 1] = 2.0*v2*v1 - dst[2, 2] = 2.0*v2*v2 - 1.0 + dst[0, 0] = 2.0 * v0 * v0 - 1.0 + dst[0, 1] = 2.0 * v0 * v1 + dst[0, 2] = 2.0 * v0 * v2 + dst[1, 0] = 2.0 * v1 * v0 + dst[1, 1] = 2.0 * v1 * v1 - 1.0 + dst[1, 2] = 2.0 * v1 * v2 + dst[2, 0] = 2.0 * v2 * v0 + dst[2, 1] = 2.0 * v2 * v1 + dst[2, 2] = 2.0 * v2 * v2 - 1.0 return dst # code transcribed in numba from transforms module ============================ + # This is equivalent to the transform module anglesToGVec, but written in # numba. This should end in a module to share with other scripts @numba.njit(nogil=True, cache=True) @@ -323,29 +344,41 @@ def _anglesToGVec(angs, rMat_ss, rMat_c): """From a set of angles return them in crystal space""" result = np.empty_like(angs) for i in range(len(angs)): - cx = np.cos(0.5*angs[i, 0]) - sx = np.sin(0.5*angs[i, 0]) + cx = np.cos(0.5 * angs[i, 0]) + sx = np.sin(0.5 * angs[i, 0]) cy = np.cos(angs[i, 1]) sy = np.sin(angs[i, 1]) - g0 = cx*cy - g1 = cx*sy + g0 = cx * cy + g1 = cx * sy g2 = sx # with g being [cx*xy, cx*sy, sx] # result = dot(rMat_c, dot(rMat_ss[i], g)) - t0_0 = \ - rMat_ss[i, 0, 0]*g0 + rMat_ss[i, 1, 0]*g1 + rMat_ss[i, 2, 0]*g2 - t0_1 = \ - rMat_ss[i, 0, 1]*g0 + rMat_ss[i, 1, 1]*g1 + rMat_ss[i, 2, 1]*g2 - t0_2 = \ - rMat_ss[i, 0, 2]*g0 + rMat_ss[i, 1, 2]*g1 + rMat_ss[i, 2, 2]*g2 - - result[i, 0] = \ - rMat_c[0, 0]*t0_0 + rMat_c[1, 0]*t0_1 + rMat_c[2, 0]*t0_2 - result[i, 1] = \ - rMat_c[0, 1]*t0_0 + rMat_c[1, 1]*t0_1 + rMat_c[2, 1]*t0_2 - result[i, 2] = \ - rMat_c[0, 2]*t0_0 + rMat_c[1, 2]*t0_1 + rMat_c[2, 2]*t0_2 + t0_0 = ( + rMat_ss[i, 0, 0] * g0 + + rMat_ss[i, 1, 0] * g1 + + rMat_ss[i, 2, 0] * g2 + ) + t0_1 = ( + rMat_ss[i, 0, 1] * g0 + + rMat_ss[i, 1, 1] * g1 + + rMat_ss[i, 2, 1] * g2 + ) + t0_2 = ( + rMat_ss[i, 0, 2] * g0 + + rMat_ss[i, 1, 2] * g1 + + rMat_ss[i, 2, 2] * g2 + ) + + result[i, 0] = ( + rMat_c[0, 0] * t0_0 + rMat_c[1, 0] * t0_1 + rMat_c[2, 0] * t0_2 + ) + result[i, 1] = ( + rMat_c[0, 1] * t0_0 + rMat_c[1, 1] * t0_1 + rMat_c[2, 1] * t0_2 + ) + result[i, 2] = ( + rMat_c[0, 2] * t0_0 + rMat_c[1, 2] * t0_1 + rMat_c[2, 2] * t0_2 + ) return result @@ -356,13 +389,14 @@ def _anglesToGVec(angs, rMat_ss, rMat_c): # temporary arrays is not competitive with the stack allocation using in # the C version of the code (WiP) + # tC varies per coord # gvec_cs, rSm varies per grain # # gvec_cs @numba.njit(nogil=True, cache=True) def _gvec_to_detector_array(vG_sn, rD, rSn, rC, tD, tS, tC): - """ beamVec is the beam vector: (0, 0, -1) in this case """ + """beamVec is the beam vector: (0, 0, -1) in this case""" ztol = xrdutil.epsf p3_l = np.empty((3,)) tmp_vec = np.empty((3,)) @@ -404,8 +438,8 @@ def _gvec_to_detector_array(vG_sn, rD, rSn, rC, tD, tS, tC): result[i, 1] = np.nan continue - u = num/denom - tmp_res = u*tD_l - p3_minus_p1_l + u = num / denom + tmp_res = u * tD_l - p3_minus_p1_l result[i, 0] = _v3_dot(tmp_res, rD[:, 0]) result[i, 1] = _v3_dot(tmp_res, rD[:, 1]) @@ -413,8 +447,9 @@ def _gvec_to_detector_array(vG_sn, rD, rSn, rC, tD, tS, tC): @numba.njit(nogil=True, cache=True) -def _quant_and_clip_confidence(coords, angles, image, - base, inv_deltas, clip_vals, bsp): +def _quant_and_clip_confidence( + coords, angles, image, base, inv_deltas, clip_vals, bsp +): """quantize and clip the parametric coordinates in coords + angles coords - (..., 2) array: input 2d parametric coordinates @@ -431,17 +466,14 @@ def _quant_and_clip_confidence(coords, angles, image, falling outside the clip zone filtered out. """ - count = len(coords) - in_sensor = 0 matches = 0 - for i in range(count): - xf = coords[i, 0] - yf = coords[i, 1] - + for index in range(len(coords)): + xf = coords[index, 0] + yf = coords[index, 1] # does not count intensity which is covered by the beamstop dcp 5.13.21 - if np.abs(yf-bsp[0])<(bsp[1]/2.): + if np.abs(yf - bsp[0]) < (bsp[1] / 2.0): continue xf = np.floor((xf - base[0]) * inv_deltas[0]) @@ -457,36 +489,33 @@ def _quant_and_clip_confidence(coords, angles, image, if not yf < clip_vals[1]: continue - zf = np.floor((angles[i] - base[2]) * inv_deltas[2]) + zf = np.floor((angles[index] - base[2]) * inv_deltas[2]) in_sensor += 1 x, y, z = int(xf), int(yf), int(zf) - # x_byte = x // 8 - # x_off = 7 - (x % 8) - # if image[z, y, x_byte] & (1 << x_off): - # matches += 1 - if image[z, y, x]: matches += 1 - return 0 if in_sensor == 0 else float(matches)/float(in_sensor) + return 0 if in_sensor == 0 else float(matches) / float(in_sensor) # ============================================================================== # %% DIFFRACTION SIMULATION # ============================================================================== -def get_simulate_diffractions(grain_params, experiment, - cache_file='gold_cubes.npy', - controller=None): + +def get_simulate_diffractions( + grain_params, experiment, cache_file='gold_cubes.npy', controller=None +): """getter functions that handles the caching of the simulation""" try: image_stack = np.load(cache_file, mmap_mode='r', allow_pickle=False) except Exception: - image_stack = simulate_diffractions(grain_params, experiment, - controller=controller) + image_stack = simulate_diffractions( + grain_params, experiment, controller=controller + ) np.save(cache_file, image_stack) controller.handle_result('image_stack', image_stack) @@ -498,9 +527,11 @@ def simulate_diffractions(grain_params, experiment, controller): """actual forward simulation of the diffraction""" # use a packed array for the image_stack - array_dims = (experiment.nframes, - experiment.ncols, - ((experiment.nrows - 1)//8) + 1) + array_dims = ( + experiment.nframes, + experiment.ncols, + ((experiment.nrows - 1) // 8) + 1, + ) image_stack = np.zeros(array_dims, dtype=np.uint8) count = len(grain_params) @@ -513,7 +544,9 @@ def simulate_diffractions(grain_params, experiment, controller): tS = experiment.tVec_s distortion = experiment.distortion - eta_range = [(-np.pi, np.pi), ] + eta_range = [ + (-np.pi, np.pi), + ] ome_range = experiment.ome_range ome_period = (-np.pi, np.pi) @@ -522,25 +555,33 @@ def simulate_diffractions(grain_params, experiment, controller): wlen = experiment.plane_data.wavelength controller.start(subprocess, count) - for i in range(count): - rC = xfcapi.makeRotMatOfExpMap(grain_params[i][0:3]) - tC = np.ascontiguousarray(grain_params[i][3:6]) - vInv_s = np.ascontiguousarray(grain_params[i][6:12]) - ang_list = np.vstack(xfcapi.oscillAnglesOfHKLs(full_hkls[:, 1:], chi, - rC, bMat, wlen, - vInv=vInv_s)) + for index in range(count): + rC = xfcapi.makeRotMatOfExpMap(grain_params[index][0:3]) + tC = np.ascontiguousarray(grain_params[index][3:6]) + vInv_s = np.ascontiguousarray(grain_params[index][6:12]) + ang_list = np.vstack( + xfcapi.oscillAnglesOfHKLs( + full_hkls[:, 1:], chi, rC, bMat, wlen, vInv=vInv_s + ) + ) # hkls not needed here - all_angs, _ = xrdutil._filter_hkls_eta_ome(full_hkls, ang_list, - eta_range, ome_range) + all_angs, _ = xrdutil._filter_hkls_eta_ome( + full_hkls, ang_list, eta_range, ome_range + ) all_angs[:, 2] = xfcapi.mapAngle(all_angs[:, 2], ome_period) - proj_pts = _project(all_angs, rD, rC, chi, tD, - tC, tS, distortion) + proj_pts = _project(all_angs, rD, rC, chi, tD, tC, tS, distortion) det_xy = proj_pts[0] - _write_pixels(det_xy, all_angs[:, 2], image_stack, experiment.base, - experiment.inv_deltas, experiment.clip_vals) + _write_pixels( + det_xy, + all_angs[:, 2], + image_stack, + experiment.base, + experiment.inv_deltas, + experiment.clip_vals, + ) - controller.update(i + 1) + controller.update(index + 1) controller.finish(subprocess) return image_stack @@ -551,15 +592,17 @@ def simulate_diffractions(grain_params, experiment, controller): # ============================================================================== -def get_dilated_image_stack(image_stack, experiment, controller, - cache_file='gold_cubes_dilated.npy'): - +def get_dilated_image_stack( + image_stack, experiment, controller, cache_file='gold_cubes_dilated.npy' +): try: - dilated_image_stack = np.load(cache_file, mmap_mode='r', - allow_pickle=False) + dilated_image_stack = np.load( + cache_file, mmap_mode='r', allow_pickle=False + ) except Exception: - dilated_image_stack = dilate_image_stack(image_stack, experiment, - controller) + dilated_image_stack = dilate_image_stack( + image_stack, experiment, controller + ) np.save(cache_file, dilated_image_stack) return dilated_image_stack @@ -569,20 +612,19 @@ def dilate_image_stack(image_stack, experiment, controller): # first, perform image dilation =========================================== # perform image dilation (using scikit_image dilation) subprocess = 'dilate image_stack' - dilation_shape = np.ones((2*experiment.row_dilation + 1, - 2*experiment.col_dilation + 1), - dtype=np.uint8) + dilation_shape = np.ones( + (2 * experiment.row_dilation + 1, 2 * experiment.col_dilation + 1), + dtype=np.uint8, + ) image_stack_dilated = np.empty_like(image_stack) dilated = np.empty( - (image_stack.shape[-2], image_stack.shape[-1] << 3), - dtype=bool + (image_stack.shape[-2], image_stack.shape[-1] << 3), dtype=bool ) n_images = len(image_stack) controller.start(subprocess, n_images) for i_image in range(n_images): to_dilate = np.unpackbits(image_stack[i_image], axis=-1) - ski_dilation(to_dilate, dilation_shape, - out=dilated) + ski_dilation(to_dilate, dilation_shape, out=dilated) image_stack_dilated[i_image] = np.packbits(dilated, axis=-1) controller.update(i_image + 1) controller.finish(subprocess) @@ -599,25 +641,27 @@ def dilate_image_stack(image_stack, experiment, controller): # booleans, an array of uint8 could be used so the image is stored # with a bit per pixel. + @numba.njit(nogil=True, cache=True) def _write_pixels(coords, angles, image, base, inv_deltas, clip_vals): count = len(coords) - for i in range(count): - x = int(np.floor((coords[i, 0] - base[0]) * inv_deltas[0])) + for index in range(count): + x = int(np.floor((coords[index, 0] - base[0]) * inv_deltas[0])) if x < 0 or x >= clip_vals[0]: continue - y = int(np.floor((coords[i, 1] - base[1]) * inv_deltas[1])) + y = int(np.floor((coords[index, 1] - base[1]) * inv_deltas[1])) if y < 0 or y >= clip_vals[1]: continue - z = int(np.floor((angles[i] - base[2]) * inv_deltas[2])) + z = int(np.floor((angles[index] - base[2]) * inv_deltas[2])) x_byte = x // 8 x_off = 7 - (x % 8) - image[z, y, x_byte] |= (1 << x_off) + image[z, y, x_byte] |= 1 << x_off + def get_offset_size(n_coords): offset = 0 @@ -630,7 +674,8 @@ def get_offset_size(n_coords): if rank == world_size - 1: size = n_coords - offset - return (offset, size) + return offset, size + def gather_confidence(controller, confidence, n_grains, n_coords): if rank == 0: @@ -641,7 +686,9 @@ def gather_confidence(controller, confidence, n_grains, n_coords): # Calculate the send buffer sizes coords_per_rank = n_coords // world_size send_counts = np.full(world_size, coords_per_rank * n_grains) - send_counts[-1] = (n_coords - (coords_per_rank * (world_size-1))) * n_grains + send_counts[-1] = ( + n_coords - (coords_per_rank * (world_size - 1)) + ) * n_grains if rank == 0: # Time how long it takes to perform the MPI gather @@ -649,16 +696,25 @@ def gather_confidence(controller, confidence, n_grains, n_coords): # Transpose so the data will be more easily re-shaped into its final shape # Must be flattened as well so the underlying data is modified... - comm.Gatherv(confidence.T.flatten(), (global_confidence, send_counts), root=0) + comm.Gatherv( + confidence.T.flatten(), (global_confidence, send_counts), root=0 + ) if rank == 0: controller.finish('gather_confidence') confidence = global_confidence.reshape(n_coords, n_grains).T controller.handle_result("confidence", confidence) + # ============================================================================== # %% ORIENTATION TESTING # ============================================================================== -def test_orientations(image_stack, experiment, test_crds, controller, multiprocessing_start_method='fork'): +def test_orientations( + image_stack, + experiment, + test_crds, + controller, + multiprocessing_start_method='fork', +): """grand loop precomputing the grown image stack image-stack -- is the dilated image stack to be tested against. @@ -696,9 +752,9 @@ def test_orientations(image_stack, experiment, test_crds, controller, multiproce subprocess = 'precompute gVec_cs' controller.start(subprocess, len(all_angles)) precomp = [] - for i, angs in enumerate(all_angles): + for index, angs in enumerate(all_angles): rmat_ss = xfcapi.make_sample_rmat(experiment.chi, angs[:, 2]) - gvec_cs = _anglesToGVec(angs, rmat_ss, experiment.rMat_c[i]) + gvec_cs = _anglesToGVec(angs, rmat_ss, experiment.rMat_c[index]) precomp.append((gvec_cs, rmat_ss)) controller.finish(subprocess) @@ -708,30 +764,43 @@ def test_orientations(image_stack, experiment, test_crds, controller, multiproce # grand loop ============================================================== # The near field simulation 'grand loop'. Where the bulk of computing is # performed. We are looking for a confidence matrix that has a n_grains - chunks = range(offset, offset+size, chunk_size) + chunks = range(offset, offset + size, chunk_size) subprocess = 'grand_loop' controller.start(subprocess, n_coords) finished = 0 ncpus = min(ncpus, len(chunks)) - logging.info(f'For {rank=}, {offset=}, {size=}, {chunks=}, {len(chunks)=}, {ncpus=}') + logging.info( + f'For {rank=}, {offset=}, {size=}, {chunks=}, {len(chunks)=}, {ncpus=}' + ) - logging.info('Checking confidence for %d coords, %d grains.', - n_coords, n_grains) + logging.info( + 'Checking confidence for %d coords, %d grains.', n_coords, n_grains + ) confidence = np.empty((n_grains, size)) if ncpus > 1: global _multiprocessing_start_method - _multiprocessing_start_method=multiprocessing_start_method - logging.info('Running multiprocess %d processes (%s)', - ncpus, _multiprocessing_start_method) - with grand_loop_pool(ncpus=ncpus, - state=(chunk_size, - image_stack, - all_angles, precomp, - test_crds, experiment)) as pool: - for rslice, rvalues in pool.imap_unordered(multiproc_inner_loop, - chunks): + _multiprocessing_start_method = multiprocessing_start_method + logging.info( + 'Running multiprocess %d processes (%s)', + ncpus, + _multiprocessing_start_method, + ) + with grand_loop_pool( + ncpus=ncpus, + state=( + chunk_size, + image_stack, + all_angles, + precomp, + test_crds, + experiment, + ), + ) as pool: + for rslice, rvalues in pool.imap_unordered( + multiproc_inner_loop, chunks + ): count = rvalues.shape[1] # We need to adjust this slice for the offset rslice = slice(rslice.start - offset, rslice.stop - offset) @@ -741,12 +810,15 @@ def test_orientations(image_stack, experiment, test_crds, controller, multiproce else: logging.info('Running in a single process') for chunk_start in chunks: - chunk_stop = min(n_coords, chunk_start+chunk_size) + chunk_stop = min(n_coords, chunk_start + chunk_size) rslice, rvalues = _grand_loop_inner( - image_stack, all_angles, - precomp, test_crds, experiment, + image_stack, + all_angles, + precomp, + test_crds, + experiment, start=chunk_start, - stop=chunk_stop + stop=chunk_stop, ) count = rvalues.shape[1] # We need to adjust this slice for the offset @@ -763,7 +835,6 @@ def test_orientations(image_stack, experiment, test_crds, controller, multiproce else: controller.handle_result("confidence", confidence) - return confidence @@ -784,29 +855,30 @@ def evaluate_diffraction_angles(experiment, controller=None): panel_dims_expanded = [(-10, -10), (10, 10)] subprocess = 'evaluate diffraction angles' - pbar = controller.start(subprocess, len(exp_maps)) all_angles = [] - ref_gparams = np.array([0., 0., 0., 1., 1., 1., 0., 0., 0.]) - for i, exp_map in enumerate(exp_maps): + ref_gparams = np.array([0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0.0]) + for index, exp_map in enumerate(exp_maps): gparams = np.hstack([exp_map, ref_gparams]) - sim_results = xrdutil.simulateGVecs(plane_data, - detector_params, - gparams, - panel_dims=panel_dims_expanded, - pixel_pitch=pixel_size, - ome_range=ome_range, - ome_period=ome_period, - distortion=None) + sim_results = xrdutil.simulateGVecs( + plane_data, + detector_params, + gparams, + panel_dims=panel_dims_expanded, + pixel_pitch=pixel_size, + ome_range=ome_range, + ome_period=ome_period, + distortion=None, + ) all_angles.append(sim_results[2]) - controller.update(i + 1) - pass + controller.update(index + 1) controller.finish(subprocess) return all_angles -def _grand_loop_inner(image_stack, angles, precomp, - coords, experiment, start=0, stop=None): +def _grand_loop_inner( + image_stack, angles, precomp, coords, experiment, start=0, stop=None +): """Actual simulation code for a chunk of data. It will be used both, in single processor and multiprocessor cases. Chunking is performed on the coords. @@ -820,10 +892,6 @@ def _grand_loop_inner(image_stack, angles, precomp, stop -- chunk end offset """ - t = timeit.default_timer() - n_coords = len(coords) - n_angles = len(angles) - # experiment geometric layout parameters rD = experiment.rMat_d rCn = experiment.rMat_c @@ -835,11 +903,11 @@ def _grand_loop_inner(image_stack, angles, precomp, inv_deltas = experiment.inv_deltas clip_vals = experiment.clip_vals distortion = experiment.distortion - bsp = experiment.bsp #beam stop vertical center and width + bsp = experiment.bsp # beam stop vertical center and width _to_detector = xfcapi.gvec_to_xy # _to_detector = _gvec_to_detector_array - stop = min(stop, n_coords) if stop is not None else n_coords + stop = min(stop, len(coords)) if stop is not None else len(coords) # FIXME: distortion hanlding is broken! distortion_fn = None @@ -849,12 +917,12 @@ def _grand_loop_inner(image_stack, angles, precomp, acc_detector = 0.0 acc_distortion = 0.0 acc_quant_clip = 0.0 - confidence = np.zeros((n_angles, stop-start)) + confidence = np.zeros((len(angles), stop - start)) grains = 0 crds = 0 if distortion_fn is None: - for igrn in range(n_angles): + for igrn in range(len(angles)): angs = angles[igrn] rC = rCn[igrn] gvec_cs, rMat_ss = precomp[igrn] @@ -865,15 +933,22 @@ def _grand_loop_inner(image_stack, angles, precomp, gvec_cs, rD, rMat_ss, rC, tD, tS, coords[icrd] ) t1 = timeit.default_timer() - c = _quant_and_clip_confidence(det_xy, angs[:, 2], image_stack, - base, inv_deltas, clip_vals, bsp) + c = _quant_and_clip_confidence( + det_xy, + angs[:, 2], + image_stack, + base, + inv_deltas, + clip_vals, + bsp, + ) t2 = timeit.default_timer() acc_detector += t1 - t0 acc_quant_clip += t2 - t1 crds += 1 confidence[igrn, icrd - start] = c else: - for igrn in range(n_angles): + for igrn in range(len(angles)): angs = angles[igrn] rC = rCn[igrn] gvec_cs, rMat_ss = precomp[igrn] @@ -882,12 +957,19 @@ def _grand_loop_inner(image_stack, angles, precomp, t0 = timeit.default_timer() tmp_xys = _to_detector( gvec_cs, rD, rMat_ss, rC, tD, tS, coords[icrd] - ) #changed to tmp_xys from det_xy, dcp 2021_05_30 + ) # changed to tmp_xys from det_xy, dcp 2021_05_30 t1 = timeit.default_timer() det_xy = distortion_fn(tmp_xys, distortion_args, invert=True) t2 = timeit.default_timer() - c = _quant_and_clip_confidence(det_xy, angs[:, 2], image_stack, - base, inv_deltas, clip_vals,bsp) + c = _quant_and_clip_confidence( + det_xy, + angs[:, 2], + image_stack, + base, + inv_deltas, + clip_vals, + bsp, + ) t3 = timeit.default_timer() acc_detector += t1 - t0 acc_distortion += t2 - t1 @@ -895,7 +977,6 @@ def _grand_loop_inner(image_stack, angles, precomp, crds += 1 confidence[igrn, icrd - start] = c - t = timeit.default_timer() - t return slice(start, stop), confidence @@ -919,16 +1000,15 @@ def generate_test_grid(low, top, samples): # would be less efficient in memory (as joblib memmaps by default the big # arrays, meaning they may be shared between processes). + def multiproc_inner_loop(chunk): """function to use in multiprocessing that computes the simulation over the task's alloted chunk of data""" chunk_size = _mp_state[0] - n_coords = len(_mp_state[4]) - - (offset, size) = get_offset_size(n_coords) + offset, size = get_offset_size(len(_mp_state[4])) - chunk_stop = min(offset+size, chunk+chunk_size) + chunk_stop = min(offset + size, chunk + chunk_size) return _grand_loop_inner(*_mp_state[1:], start=chunk, stop=chunk_stop) @@ -975,7 +1055,7 @@ def grand_loop_pool(ncpus, state): _mp_state = state pool = multiprocessing.Pool(ncpus) yield pool - del (_mp_state) + del _mp_state else: # Use SPAWN multiprocessing. @@ -987,61 +1067,77 @@ def grand_loop_pool(ncpus, state): # joblib). In theory, joblib uses memmap for arrays if they are not # compressed, so no compression is used for the bigger arrays. import joblib + tmp_dir = tempfile.mkdtemp(suffix='-nf-grand-loop') try: # dumb dumping doesn't seem to work very well.. do something ad-hoc logging.info('Using "%s" as temporary directory.', tmp_dir) - id_exp = joblib.dump(state[-1], - os.path.join(tmp_dir, - 'grand-loop-experiment.gz'), - compress=True) - id_state = joblib.dump(state[:-1], - os.path.join(tmp_dir, 'grand-loop-data')) - pool = multiprocessing.Pool(ncpus, worker_init, - (id_state[0], id_exp[0])) + id_exp = joblib.dump( + state[-1], + os.path.join(tmp_dir, 'grand-loop-experiment.gz'), + compress=True, + ) + id_state = joblib.dump( + state[:-1], os.path.join(tmp_dir, 'grand-loop-data') + ) + pool = multiprocessing.Pool( + ncpus, worker_init, (id_state[0], id_exp[0]) + ) yield pool finally: logging.info('Deleting "%s".', tmp_dir) shutil.rmtree(tmp_dir) -#%% Test Grid Generation - - def gen_nf_test_grid(cross_sectional_dim, v_bnds, voxel_spacing): + grid_z = np.arange( + -cross_sectional_dim / 2.0 + voxel_spacing / 2.0, + cross_sectional_dim / 2.0, + voxel_spacing, + ) + grid_x = np.arange( + -cross_sectional_dim / 2.0 + voxel_spacing / 2.0, + cross_sectional_dim / 2.0, + voxel_spacing, + ) - grid_z = np.arange(-cross_sectional_dim/2.+voxel_spacing/2.,cross_sectional_dim/2.,voxel_spacing) - grid_x = np.arange(-cross_sectional_dim/2.+voxel_spacing/2.,cross_sectional_dim/2.,voxel_spacing) - - if v_bnds[0]==v_bnds[1]: + if v_bnds[0] == v_bnds[1]: x, y, z = np.meshgrid(grid_x, v_bnds[0], grid_z) else: - x, y, z = np.meshgrid(grid_x, np.arange(v_bnds[0]+voxel_spacing/2., v_bnds[1],voxel_spacing), grid_z) - #note numpy shaping of arrays is goofy, returns(length(y),length(x),length(z)) - - + x, y, z = np.meshgrid( + grid_x, + np.arange( + v_bnds[0] + voxel_spacing / 2.0, v_bnds[1], voxel_spacing + ), + grid_z, + ) + # note numpy shaping of arrays is goofy, returns(length(y),length(x),length(z)) test_crds = np.vstack([x.flatten(), y.flatten(), z.flatten()]).T n_crds = len(test_crds) - return test_crds, n_crds, x, y, z - def gen_nf_test_grid_tomo(x_dim_pnts, z_dim_pnts, v_bnds, voxel_spacing): - if v_bnds[0]==v_bnds[1]: - Xs,Ys,Zs=np.meshgrid(np.arange(x_dim_pnts),v_bnds[0],np.arange(z_dim_pnts)) + if v_bnds[0] == v_bnds[1]: + Xs, Ys, Zs = np.meshgrid( + np.arange(x_dim_pnts), v_bnds[0], np.arange(z_dim_pnts) + ) else: - Xs,Ys,Zs=np.meshgrid(np.arange(x_dim_pnts),np.arange(v_bnds[0]+voxel_spacing/2.,v_bnds[1],voxel_spacing),np.arange(z_dim_pnts)) - #note numpy shaping of arrays is goofy, returns(length(y),length(x),length(z)) - - - Zs=(Zs-(z_dim_pnts/2))*voxel_spacing - Xs=(Xs-(x_dim_pnts/2))*voxel_spacing - + Xs, Ys, Zs = np.meshgrid( + np.arange(x_dim_pnts), + np.arange( + v_bnds[0] + voxel_spacing / 2.0, v_bnds[1], voxel_spacing + ), + np.arange(z_dim_pnts), + ) + # note numpy shaping of arrays is goofy, returns(length(y),length(x),length(z)) + + Zs = (Zs - (z_dim_pnts / 2)) * voxel_spacing + Xs = (Xs - (x_dim_pnts / 2)) * voxel_spacing test_crds = np.vstack([Xs.flatten(), Ys.flatten(), Zs.flatten()]).T n_crds = len(test_crds) @@ -1049,166 +1145,211 @@ def gen_nf_test_grid_tomo(x_dim_pnts, z_dim_pnts, v_bnds, voxel_spacing): return test_crds, n_crds, Xs, Ys, Zs +def gen_nf_dark( + data_folder, + img_nums, + num_for_dark, + nrows, + ncols, + dark_type='median', + stem='nf_', + num_digits=5, + ext='.tif', +): - -#%% - -def gen_nf_dark(data_folder,img_nums,num_for_dark,nrows,ncols,dark_type='median',stem='nf_',num_digits=5,ext='.tif'): - - dark_stack=np.zeros([num_for_dark,nrows,ncols]) + dark_stack = np.zeros([num_for_dark, nrows, ncols]) print('Loading data for dark generation...') - for ii in np.arange(num_for_dark): - print('Image #: ' + str(ii)) - dark_stack[ii,:,:]=imgio.imread(data_folder+'%s'%(stem)+str(img_nums[ii]).zfill(num_digits)+ext) - #image_stack[ii,:,:]=np.flipud(tmp_img>threshold) - - if dark_type=='median': + for index in np.arange(num_for_dark): + print('Image #: ' + str(index)) + dark_stack[index, :, :] = imgio.imread( + data_folder + + stem + + str(img_nums[index]).zfill(num_digits) + + ext + ) + + if dark_type == 'median': print('making median...') - dark=np.median(dark_stack,axis=0) - elif dark_type=='min': + dark = np.median(dark_stack, axis=0) + elif dark_type == 'min': print('making min...') - dark=np.min(dark_stack,axis=0) + dark = np.min(dark_stack, axis=0) + else: + raise ValueError(f'Dark Type {dark_type} not recognized.') return dark -#%% - - -def gen_nf_cleaned_image_stack(data_folder,img_nums,dark,nrows,ncols, \ - process_type='gaussian',process_args=[4.5,5], \ - threshold=1.5,ome_dilation_iter=1,stem='nf_', \ - num_digits=5,ext='.tif'): - - image_stack=np.zeros([img_nums.shape[0],nrows,ncols],dtype=bool) +def gen_nf_cleaned_image_stack( + data_folder, + img_nums, + dark, + nrows, + ncols, + process_type='gaussian', + process_args=[4.5, 5], + threshold=1.5, + ome_dilation_iter=1, + stem='nf_', + num_digits=5, + ext='.tif', +): + image_stack = np.zeros([img_nums.shape[0], nrows, ncols], dtype=bool) print('Loading and Cleaning Images...') - - if process_type=='gaussian': - sigma=process_args[0] - size=process_args[1].astype(int) #needs to be int - - for ii in np.arange(img_nums.shape[0]): - print('Image #: ' + str(ii)) - tmp_img=imgio.imread(data_folder+'%s'%(stem)+str(img_nums[ii]).zfill(num_digits)+ext)-dark - #image procesing + if process_type == 'gaussian': + sigma = process_args[0] + size = process_args[1].astype(int) # needs to be int + + for index in np.arange(img_nums.shape[0]): + print('Image #: ' + str(index)) + tmp_img = ( + imgio.imread( + data_folder + + SystemExit + + str(img_nums[index]).zfill(num_digits) + + ext + ) + - dark + ) + # image procesing tmp_img = filters.gaussian(tmp_img, sigma=sigma) - tmp_img = img.morphology.grey_closing(tmp_img,size=(size,size)) + tmp_img = img.morphology.grey_closing(tmp_img, size=(size, size)) - binary_img = img.morphology.binary_fill_holes(tmp_img>threshold) - image_stack[ii,:,:]=binary_img + binary_img = img.morphology.binary_fill_holes(tmp_img > threshold) + image_stack[index, :, :] = binary_img else: + num_erosions = process_args[0] + num_dilations = process_args[1] + + for index in np.arange(img_nums.shape[0]): + print('Image #: ' + str(index)) + tmp_img = ( + imgio.imread( + data_folder + + '%s' % (stem) + + str(img_nums[index]).zfill(num_digits) + + ext + ) + - dark + ) + # image procesing + image_stack[index, :, :] = img.morphology.binary_erosion( + tmp_img > threshold, iterations=num_erosions + ) + image_stack[index, :, :] = img.morphology.binary_dilation( + image_stack[index, :, :], iterations=num_dilations + ) - num_erosions=process_args[0] - num_dilations=process_args[1] - - - for ii in np.arange(img_nums.shape[0]): - print('Image #: ' + str(ii)) - tmp_img=imgio.imread(data_folder+'%s'%(stem)+str(img_nums[ii]).zfill(num_digits)+ext)-dark - #image procesing - image_stack[ii,:,:]=img.morphology.binary_erosion(tmp_img>threshold,iterations=num_erosions) - image_stack[ii,:,:]=img.morphology.binary_dilation(image_stack[ii,:,:],iterations=num_dilations) - - - #%A final dilation that includes omega + # A final dilation that includes omega print('Final Dilation Including Omega....') - image_stack=img.morphology.binary_dilation(image_stack,iterations=ome_dilation_iter) - + image_stack = img.morphology.binary_dilation( + image_stack, iterations=ome_dilation_iter + ) return image_stack +# %% -#%% - - -def gen_trial_exp_data(grain_out_file,det_file,mat_file, mat_name, max_tth, comp_thresh, chi2_thresh, misorientation_bnd, \ - misorientation_spacing,ome_range_deg, nframes, beam_stop_parms): - +def gen_trial_exp_data( + grain_out_file, + det_file, + mat_file, + mat_name, + max_tth, + comp_thresh, + chi2_thresh, + misorientation_bnd, + misorientation_spacing, + ome_range_deg, + nframes, + beam_stop_parms, +): print('Loading Grain Data...') - #gen_grain_data - ff_data=np.loadtxt(grain_out_file) - - #ff_data=np.atleast_2d(ff_data[2,:]) + # gen_grain_data + ff_data = np.loadtxt(grain_out_file) - exp_maps=ff_data[:,3:6] - t_vec_ds=ff_data[:,6:9] + exp_maps = ff_data[:, 3:6] + t_vec_ds = ff_data[:, 6:9] + chi2 = ff_data[:, 2] - # - completeness=ff_data[:,1] - - chi2=ff_data[:,2] - - n_grains=exp_maps.shape[0] + n_grains = exp_maps.shape[0] rMat_c = rotations.rotMatOfExpMap(exp_maps.T) - cut=np.where(np.logical_and(completeness>comp_thresh,chi2 comp_thresh, chi2 < chi2_thresh) + )[0] + exp_maps = exp_maps[cut, :] + t_vec_ds = t_vec_ds[cut, :] + chi2 = chi2[cut] # Add Misorientation - mis_amt=misorientation_bnd*np.pi/180. - spacing=misorientation_spacing*np.pi/180. - - mis_steps = int(misorientation_bnd/misorientation_spacing) + mis_amt = misorientation_bnd * np.pi / 180.0 + spacing = misorientation_spacing * np.pi / 180.0 - ori_pts = np.arange(-mis_amt, (mis_amt+(spacing*0.999)),spacing) - num_ori_grid_pts=ori_pts.shape[0]**3 - num_oris=exp_maps.shape[0] + mis_steps = int(misorientation_bnd / misorientation_spacing) + ori_pts = np.arange(-mis_amt, (mis_amt + (spacing * 0.999)), spacing) + num_ori_grid_pts = ori_pts.shape[0] ** 3 + num_oris = exp_maps.shape[0] XsO, YsO, ZsO = np.meshgrid(ori_pts, ori_pts, ori_pts) grid0 = np.vstack([XsO.flatten(), YsO.flatten(), ZsO.flatten()]).T + exp_maps_expanded = np.zeros([num_ori_grid_pts * num_oris, 3]) + t_vec_ds_expanded = np.zeros([num_ori_grid_pts * num_oris, 3]) - exp_maps_expanded=np.zeros([num_ori_grid_pts*num_oris,3]) - t_vec_ds_expanded=np.zeros([num_ori_grid_pts*num_oris,3]) + for index in np.arange(num_oris): + pts_to_use = np.arange(num_ori_grid_pts) + index * num_ori_grid_pts + exp_maps_expanded[pts_to_use, :] = grid0 + np.r_[exp_maps[index, :]] + t_vec_ds_expanded[pts_to_use, :] = np.r_[t_vec_ds[index, :]] + exp_maps = exp_maps_expanded + t_vec_ds = t_vec_ds_expanded - for ii in np.arange(num_oris): - pts_to_use=np.arange(num_ori_grid_pts)+ii*num_ori_grid_pts - exp_maps_expanded[pts_to_use,:]=grid0+np.r_[exp_maps[ii,:] ] - t_vec_ds_expanded[pts_to_use,:]=np.r_[t_vec_ds[ii,:] ] - - - exp_maps=exp_maps_expanded - t_vec_ds=t_vec_ds_expanded - - n_grains=exp_maps.shape[0] + n_grains = exp_maps.shape[0] rMat_c = rotations.rotMatOfExpMap(exp_maps.T) - print('Loading Instrument Data...') - ome_period_deg=(ome_range_deg[0][0], (ome_range_deg[0][0]+360.)) #degrees - ome_step_deg=(ome_range_deg[0][1]-ome_range_deg[0][0])/nframes #degrees - - - ome_period = (ome_period_deg[0]*np.pi/180.,ome_period_deg[1]*np.pi/180.) - ome_range = [(ome_range_deg[0][0]*np.pi/180.,ome_range_deg[0][1]*np.pi/180.)] - ome_step = ome_step_deg*np.pi/180. - - - - ome_edges = np.arange(nframes+1)*ome_step+ome_range[0][0]#fixed 2/26/17 - + ome_period_deg = ( + ome_range_deg[0][0], + (ome_range_deg[0][0] + 360.0), + ) # degrees + ome_step_deg = ( + ome_range_deg[0][1] - ome_range_deg[0][0] + ) / nframes # degrees + + ome_period = ( + ome_period_deg[0] * np.pi / 180.0, + ome_period_deg[1] * np.pi / 180.0, + ) + ome_range = [ + ( + ome_range_deg[0][0] * np.pi / 180.0, + ome_range_deg[0][1] * np.pi / 180.0, + ) + ] + ome_step = ome_step_deg * np.pi / 180.0 + + ome_edges = ( + np.arange(nframes + 1) * ome_step + ome_range[0][0] + ) - instr=load_instrument(det_file) + instr = load_instrument(det_file) panel = next(iter(instr.detectors.values())) # !!! there is only 1 - # tranform paramters + # tranform paramters # Sample chi = instr.chi tVec_s = instr.tvec @@ -1225,12 +1366,10 @@ def gen_trial_exp_data(grain_out_file,det_file,mat_file, mat_name, max_tth, comp ncols = panel.cols # panel dimensions - panel_dims = [tuple(panel.corner_ll), - tuple(panel.corner_ur)] + panel_dims = [tuple(panel.corner_ll), tuple(panel.corner_ur)] x_col_edges = panel.col_edge_vec y_row_edges = panel.row_edge_vec - rx, ry = np.meshgrid(x_col_edges, y_row_edges) max_pixel_tth = instrument.max_tth(instr) @@ -1239,41 +1378,39 @@ def gen_trial_exp_data(grain_out_file,det_file,mat_file, mat_name, max_tth, comp # a different parametrization for the sensor # (makes for faster quantization) - base = np.array([x_col_edges[0], - y_row_edges[0], - ome_edges[0]]) - deltas = np.array([x_col_edges[1] - x_col_edges[0], - y_row_edges[1] - y_row_edges[0], - ome_edges[1] - ome_edges[0]]) - inv_deltas = 1.0/deltas + base = np.array([x_col_edges[0], y_row_edges[0], ome_edges[0]]) + deltas = np.array( + [ + x_col_edges[1] - x_col_edges[0], + y_row_edges[1] - y_row_edges[0], + ome_edges[1] - ome_edges[0], + ] + ) + inv_deltas = 1.0 / deltas clip_vals = np.array([ncols, nrows]) - # # dilation - # max_diameter = np.sqrt(3)*0.005 - # row_dilation = int(np.ceil(0.5 * max_diameter/row_ps)) - # col_dilation = int(np.ceil(0.5 * max_diameter/col_ps)) - - - print('Loading Materials Data...') # crystallography data - beam_energy = valunits.valWUnit("beam_energy", "energy", instr.beam_energy, "keV") + beam_energy = valunits.valWUnit( + "beam_energy", "energy", instr.beam_energy, "keV" + ) beam_wavelength = constants.keVToAngstrom(beam_energy.getVal('keV')) - dmin = valunits.valWUnit("dmin", "length", - 0.5*beam_wavelength/np.sin(0.5*max_pixel_tth), - "angstrom") + dmin = valunits.valWUnit( + "dmin", + "length", + 0.5 * beam_wavelength / np.sin(0.5 * max_pixel_tth), + "angstrom", + ) # material loading - mats = material.load_materials_hdf5(mat_file, dmin=dmin,kev=beam_energy) + mats = material.load_materials_hdf5(mat_file, dmin=dmin, kev=beam_energy) pd = mats[mat_name].planeData if max_tth is not None: - pd.tThMax = np.amax(np.radians(max_tth)) + pd.tThMax = np.amax(np.radians(max_tth)) else: pd.tThMax = np.amax(max_pixel_tth) - - print('Final Assembly...') experiment = argparse.Namespace() # grains related information @@ -1297,8 +1434,6 @@ def gen_trial_exp_data(grain_out_file,det_file,mat_file, mat_name, max_tth, comp experiment.chi = chi # note this is used to compute S... why is it needed? experiment.tVec_s = tVec_s experiment.rMat_c = rMat_c - # ns.row_dilation = 0 #done beforehand row_dilation, disabled - # experiemnt.col_dilation = 0 #col_dilation experiment.distortion = distortion experiment.panel_dims = panel_dims # used only in simulate... experiment.base = base @@ -1306,249 +1441,259 @@ def gen_trial_exp_data(grain_out_file,det_file,mat_file, mat_name, max_tth, comp experiment.clip_vals = clip_vals experiment.bsp = beam_stop_parms - - if mis_steps ==0: + if mis_steps == 0: nf_to_ff_id_map = cut else: - nf_to_ff_id_map=np.tile(cut,3**3*mis_steps) + nf_to_ff_id_map = np.tile(cut, 3**3 * mis_steps) return experiment, nf_to_ff_id_map -def process_raw_confidence(raw_confidence,vol_shape=None,id_remap=None,min_thresh=0.0): - - print('Compiling Confidence Map...') - if vol_shape == None: - confidence_map=np.max(raw_confidence,axis=0) - grain_map=np.argmax(raw_confidence,axis=0) - else: - confidence_map=np.max(raw_confidence,axis=0).reshape(vol_shape) - grain_map=np.argmax(raw_confidence,axis=0).reshape(vol_shape) +def process_raw_confidence( + raw_confidence, vol_shape=None, id_remap=None, min_thresh=0.0 +): - #fix grain indexing - not_indexed=np.where(confidence_map<=min_thresh) - grain_map[not_indexed] =-1 + print('Compiling Confidence Map...') + confidence_map = np.max(raw_confidence, axis=0).reshape(vol_shape) + grain_map = np.argmax(raw_confidence, axis=0).reshape(vol_shape) + # fix grain indexing + not_indexed = np.where(confidence_map <= min_thresh) + grain_map[not_indexed] = -1 if id_remap is not None: - max_grain_no=np.max(grain_map) - grain_map_copy=copy.copy(grain_map) + max_grain_no = np.max(grain_map) + grain_map_copy = copy.copy(grain_map) print('Remapping grain ids to ff...') - for ii in np.arange(max_grain_no): - this_grain=np.where(grain_map==ii) - grain_map_copy[this_grain]=id_remap[ii] - grain_map=grain_map_copy + for index in np.arange(max_grain_no): + this_grain = np.where(grain_map == index) + grain_map_copy[this_grain] = id_remap[index] + grain_map = grain_map_copy return grain_map.astype(int), confidence_map -#%% -def save_raw_confidence(save_dir,save_stem,raw_confidence,id_remap=None): +def save_raw_confidence(save_dir, save_stem, raw_confidence, id_remap=None): print('Saving raw confidence, might take a while...') if id_remap is not None: - np.savez(save_dir+save_stem+'_raw_confidence.npz',raw_confidence=raw_confidence,id_remap=id_remap) + np.savez( + save_dir + save_stem + '_raw_confidence.npz', + raw_confidence=raw_confidence, + id_remap=id_remap, + ) else: - np.savez(save_dir+save_stem+'_raw_confidence.npz',raw_confidence=raw_confidence) -#%% - -def save_nf_data(save_dir,save_stem,grain_map,confidence_map,Xs,Ys,Zs,ori_list,id_remap=None): + np.savez( + save_dir + save_stem + '_raw_confidence.npz', + raw_confidence=raw_confidence, + ) + + +def save_nf_data( + save_dir, + save_stem, + grain_map, + confidence_map, + Xs, + Ys, + Zs, + ori_list, + id_remap=None, +): print('Saving grain map data...') if id_remap is not None: - np.savez(save_dir+save_stem+'_grain_map_data.npz',grain_map=grain_map,confidence_map=confidence_map,Xs=Xs,Ys=Ys,Zs=Zs,ori_list=ori_list,id_remap=id_remap) + np.savez( + save_dir + save_stem + '_grain_map_data.npz', + grain_map=grain_map, + confidence_map=confidence_map, + Xs=Xs, + Ys=Ys, + Zs=Zs, + ori_list=ori_list, + id_remap=id_remap, + ) else: - np.savez(save_dir+save_stem+'_grain_map_data.npz',grain_map=grain_map,confidence_map=confidence_map,Xs=Xs,Ys=Ys,Zs=Zs,ori_list=ori_list) + np.savez( + save_dir + save_stem + '_grain_map_data.npz', + grain_map=grain_map, + confidence_map=confidence_map, + Xs=Xs, + Ys=Ys, + Zs=Zs, + ori_list=ori_list, + ) + + +def scan_detector_parm( + image_stack, + experiment, + test_crds, + controller, + parm_to_opt, + parm_range, + slice_shape, + ang='deg', +): + # 0-distance + # 1-x center + # 2-y center + # 3-xtilt + # 4-ytilt + # 5-ztilt + + parm_vector = np.arange( + parm_range[0], + parm_range[1] + 1e-6, + (parm_range[1] - parm_range[0]) / parm_range[2], + ) + if parm_to_opt > 2 and ang == 'deg': + parm_vector = parm_vector * np.pi / 180.0 + multiprocessing_start_method = 'fork' if hasattr(os, 'fork') else 'spawn' -#%% + # current detector parameters, note the value for the actively optimized parameters will be ignored + xtilt = experiment.detector_params[0] + ytilt = experiment.detector_params[1] + ztilt = experiment.detector_params[2] + ome_range = copy.copy(experiment.ome_range) + ome_period = copy.copy(experiment.ome_period) + ome_edges = copy.copy(experiment.ome_edges) -def scan_detector_parm(image_stack, experiment,test_crds,controller,parm_to_opt,parm_range,slice_shape,ang='deg'): - #0-distance - #1-x center - #2-y center - #3-xtilt - #4-ytilt - #5-ztilt + num_parm_pts = len(parm_vector) - parm_vector=np.arange(parm_range[0],parm_range[1]+1e-6,(parm_range[1]-parm_range[0])/parm_range[2]) + trial_data = np.zeros([num_parm_pts, slice_shape[0], slice_shape[1]]) + tmp_td = copy.copy(experiment.tVec_d) + for index in np.arange(num_parm_pts): + print(f'cycle {index+1} of {num_parm_pts}') - if parm_to_opt>2 and ang=='deg': - parm_vector=parm_vector*np.pi/180. + # overwrite translation vector components + if parm_to_opt == 0: + tmp_td[2] = parm_vector[index] - multiprocessing_start_method = 'fork' if hasattr(os, 'fork') else 'spawn' + if parm_to_opt == 1: + tmp_td[0] = parm_vector[index] - #current detector parameters, note the value for the actively optimized parameters will be ignored - distance=experiment.detector_params[5]#mm - x_cen=experiment.detector_params[3]#mm - y_cen=experiment.detector_params[4]#mm - xtilt=experiment.detector_params[0] - ytilt=experiment.detector_params[1] - ztilt=experiment.detector_params[2] - ome_range=copy.copy(experiment.ome_range) - ome_period=copy.copy(experiment.ome_period) - ome_edges=copy.copy(experiment.ome_edges) - - num_parm_pts=len(parm_vector) - - trial_data=np.zeros([num_parm_pts,slice_shape[0],slice_shape[1]]) - - tmp_td=copy.copy(experiment.tVec_d) - for jj in np.arange(num_parm_pts): - print(f'cycle {jj+1} of {num_parm_pts}') - - #overwrite translation vector components - if parm_to_opt==0: - tmp_td[2]=parm_vector[jj] - - if parm_to_opt==1: - tmp_td[0]=parm_vector[jj] - - if parm_to_opt==2: - tmp_td[1]=parm_vector[jj] - - if parm_to_opt==3: - rMat_d_tmp=xfcapi.makeDetectorRotMat([parm_vector[jj],ytilt,ztilt]) - elif parm_to_opt==4: - rMat_d_tmp=xfcapi.makeDetectorRotMat([xtilt,parm_vector[jj],ztilt]) - elif parm_to_opt==5: - rMat_d_tmp=xfcapi.makeDetectorRotMat([xtilt,ytilt,parm_vector[jj]]) + if parm_to_opt == 2: + tmp_td[1] = parm_vector[index] + + if parm_to_opt == 3: + rMat_d_tmp = xfcapi.makeDetectorRotMat( + [parm_vector[index], ytilt, ztilt] + ) + elif parm_to_opt == 4: + rMat_d_tmp = xfcapi.makeDetectorRotMat( + [xtilt, parm_vector[index], ztilt] + ) + elif parm_to_opt == 5: + rMat_d_tmp = xfcapi.makeDetectorRotMat( + [xtilt, ytilt, parm_vector[index]] + ) else: - rMat_d_tmp=xfcapi.makeDetectorRotMat([xtilt,ytilt,ztilt]) + rMat_d_tmp = xfcapi.makeDetectorRotMat([xtilt, ytilt, ztilt]) experiment.rMat_d = rMat_d_tmp experiment.tVec_d = tmp_td - if parm_to_opt==6: - experiment.ome_range=[(ome_range[0][0]-parm_vector[jj],ome_range[0][1]-parm_vector[jj])] - experiment.ome_period=(ome_period[0]-parm_vector[jj],ome_period[1]-parm_vector[jj]) - experiment.ome_edges=np.array(ome_edges-parm_vector[jj]) - experiment.base[2]=experiment.ome_edges[0] - - # print(experiment.ome_range) - # print(experiment.ome_period) - # print(experiment.ome_edges) - # print(experiment.base) - - conf=test_orientations(image_stack, experiment,test_crds,controller, \ - multiprocessing_start_method) + if parm_to_opt == 6: + experiment.ome_range = [ + ( + ome_range[0][0] - parm_vector[index], + ome_range[0][1] - parm_vector[index], + ) + ] + experiment.ome_period = ( + ome_period[0] - parm_vector[index], + ome_period[1] - parm_vector[index], + ) + experiment.ome_edges = np.array(ome_edges - parm_vector[index]) + experiment.base[2] = experiment.ome_edges[0] + conf = test_orientations( + image_stack, + experiment, + test_crds, + controller, + multiprocessing_start_method, + ) - trial_data[jj]=np.max(conf,axis=0).reshape(slice_shape) + trial_data[index] = np.max(conf, axis=0).reshape(slice_shape) return trial_data, parm_vector -#%% -def plot_ori_map(grain_map, confidence_map, exp_maps, layer_no,mat,id_remap=None): +def plot_ori_map( + grain_map, confidence_map, exp_maps, layer_no, mat, id_remap=None +): - grains_plot=np.squeeze(grain_map[layer_no,:,:]) - conf_plot=np.squeeze(confidence_map[layer_no,:,:]) - n_grains=len(exp_maps) + grains_plot = np.squeeze(grain_map[layer_no, :, :]) + conf_plot = np.squeeze(confidence_map[layer_no, :, :]) + n_grains = len(exp_maps) rgb_image = np.zeros( - [grains_plot.shape[0], grains_plot.shape[1], 4], dtype='float32') - rgb_image[:, :, 3] = 1. + [grains_plot.shape[0], grains_plot.shape[1], 4], dtype='float32' + ) + rgb_image[:, :, 3] = 1.0 - for ii in np.arange(n_grains): + for index in np.arange(n_grains): if id_remap is not None: - this_grain = np.where(np.squeeze(grains_plot) == id_remap[ii]) + this_grain = np.where(np.squeeze(grains_plot) == id_remap[index]) else: - this_grain = np.where(np.squeeze(grains_plot) == ii) + this_grain = np.where(np.squeeze(grains_plot) == index) if np.sum(this_grain[0]) > 0: - ori = exp_maps[ii, :] + ori = exp_maps[index, :] rmats = rot.rotMatOfExpMap(ori) rgb = mat.unitcell.color_orientations( - rmats, ref_dir=np.array([0., 1., 0.])) + rmats, ref_dir=np.array([0.0, 1.0, 0.0]) + ) - #color mapping + # color mapping rgb_image[this_grain[0], this_grain[1], 0] = rgb[0][0] rgb_image[this_grain[0], this_grain[1], 1] = rgb[0][1] rgb_image[this_grain[0], this_grain[1], 2] = rgb[0][2] - - fig1 = plt.figure() plt.imshow(rgb_image, interpolation='none') plt.title('Layer %d Grain Map' % layer_no) plt.show() - #plt.hold(True) fig2 = plt.figure() - plt.imshow(conf_plot, vmin=0.0, vmax=1., - interpolation='none', cmap=plt.cm.gray, alpha=0.5) + plt.imshow( + conf_plot, + vmin=0.0, + vmax=1.0, + interpolation='none', + cmap=plt.cm.gray, + alpha=0.5, + ) plt.title('Layer %d Confidence Map' % layer_no) plt.show() + + # ============================================================================== # %% SCRIPT ENTRY AND PARAMETER HANDLING # ============================================================================== -# def main(args, controller): -# grain_params, experiment = mockup_experiment() -# controller.handle_result('experiment', experiment) -# controller.handle_result('grain_params', grain_params) -# image_stack = get_simulate_diffractions(grain_params, experiment, -# controller=controller) -# image_stack = get_dilated_image_stack(image_stack, experiment, -# controller) - -# test_orientations(image_stack, experiment, -# controller=controller) - - -# def parse_args(): -# try: -# default_ncpus = multiprocessing.cpu_count() -# except NotImplementedError: -# default_ncpus = 1 - -# parser = argparse.ArgumentParser() -# parser.add_argument("--inst-profile", action='append', default=[], -# help="instrumented profile") -# parser.add_argument("--generate", -# help="generate file with intermediate results") -# parser.add_argument("--check", -# help="check against an file with intermediate results") -# parser.add_argument("--limit", type=int, -# help="limit the size of the run") -# parser.add_argument("--ncpus", type=int, default=default_ncpus, -# help="number of processes to use") -# parser.add_argument("--chunk-size", type=int, default=100, -# help="chunk size for use in multiprocessing/reporting") -# parser.add_argument("--force-spawn-multiprocessing", action='store_true', -# help="force using spawn as the multiprocessing method") -# args = parser.parse_args() - -# ''' -# keys = [ -# 'inst_profile', -# 'generate', -# 'check', -# 'limit', -# 'ncpus', -# 'chunk_size'] -# print( -# '\n'.join([': '.join([key, str(getattr(args, key))]) for key in keys]) -# ) -# ''' -# return args - - -def build_controller(check=None,generate=None,ncpus=2,chunk_size=10,limit=None): + +def build_controller( + check=None, generate=None, ncpus=2, chunk_size=10, limit=None +): # builds the controller to use based on the args # result handle try: import progressbar + progress_handler = progressbar_progress_observer() except ImportError: progress_handler = null_progress_observer() if check is not None: if generate is not None: - logging.warn( + logging.warning( "generating and checking can not happen at the same time, " - + "going with checking") + + "going with checking" + ) result_handler = checking_result_handler(check) elif generate is not None: @@ -1556,185 +1701,163 @@ def build_controller(check=None,generate=None,ncpus=2,chunk_size=10,limit=None): else: result_handler = forgetful_result_handler() - # if args.ncpus > 1 and os.name == 'nt': - # logging.warn("Multiprocessing on Windows is disabled for now") - # args.ncpus = 1 - - controller = ProcessController(result_handler, progress_handler, - ncpus=ncpus, - chunk_size=chunk_size) + controller = ProcessController( + result_handler, progress_handler, ncpus=ncpus, chunk_size=chunk_size + ) if limit is not None: controller.set_limit('coords', lambda x: min(x, limit)) return controller -def output_grain_map(data_location, data_stems, output_stem, vol_spacing, - top_down: bool=True, save_type=['npz']): - num_scans=len(data_stems) - - confidence_maps=[None]*num_scans - grain_maps=[None]*num_scans - Xss=[None]*num_scans - Yss=[None]*num_scans - Zss=[None]*num_scans - if len(vol_spacing)==1: - vol_shifts=np.arange(0,vol_spacing[0]*num_scans+1e-12,vol_spacing[0]) +def output_grain_map( + data_location, + data_stems, + output_stem, + vol_spacing, + top_down: bool = True, + save_type: Sequence[str]=('npz',), +): + num_scans = len(data_stems) + + confidence_maps = [None] * num_scans + grain_maps = [None] * num_scans + x_values = [None] * num_scans + y_values = [None] * num_scans + z_values = [None] * num_scans + + if len(vol_spacing) == 1: + vol_shifts = np.arange( + 0, vol_spacing[0] * num_scans + 1e-12, vol_spacing[0] + ) else: - vol_shifts=vol_spacing - - - for ii in np.arange(num_scans): - print(f'Loading Volume {ii} ....') - conf_data=np.load(os.path.join(data_location,data_stems[ii]+'_grain_map_data.npz')) + vol_shifts = vol_spacing - confidence_maps[ii]=conf_data['confidence_map'] - grain_maps[ii]=conf_data['grain_map'] - Xss[ii]=conf_data['Xs'] - Yss[ii]=conf_data['Ys'] - Zss[ii]=conf_data['Zs'] + for index in np.arange(num_scans): + print(f'Loading Volume {index} ....') + conf_data = np.load( + os.path.join(data_location, data_stems[index] + '_grain_map_data.npz') + ) - #assumes all volumes to be the same size - num_layers=grain_maps[0].shape[0] + confidence_maps[index] = conf_data['confidence_map'] + grain_maps[index] = conf_data['grain_map'] + x_values[index] = conf_data['Xs'] + y_values[index] = conf_data['Ys'] + z_values[index] = conf_data['Zs'] - total_layers=num_layers*num_scans + # assumes all volumes to be the same size + num_layers = grain_maps[0].shape[0] - num_rows=grain_maps[0].shape[1] - num_cols=grain_maps[0].shape[2] + total_layers = num_layers * num_scans - grain_map_stitched=np.zeros((total_layers,num_rows,num_cols)) - confidence_stitched=np.zeros((total_layers,num_rows,num_cols)) - Xs_stitched=np.zeros((total_layers,num_rows,num_cols)) - Ys_stitched=np.zeros((total_layers,num_rows,num_cols)) - Zs_stitched=np.zeros((total_layers,num_rows,num_cols)) + num_rows = grain_maps[0].shape[1] + num_cols = grain_maps[0].shape[2] + grain_map_stitched = np.zeros((total_layers, num_rows, num_cols)) + confidence_stitched = np.zeros((total_layers, num_rows, num_cols)) + x_stitched = np.zeros((total_layers, num_rows, num_cols)) + y_stitched = np.zeros((total_layers, num_rows, num_cols)) + z_stitched = np.zeros((total_layers, num_rows, num_cols)) - for ii in np.arange(num_scans): - index = (num_scans - 1 - ii) if top_down else ii - index_slice = slice((ii * num_layers), ((ii + 1) * num_layers)) + for scan_num in np.arange(num_scans): + index = (num_scans - 1 - scan_num) if top_down else scan_num + index_slice = slice((index * num_layers), ((index + 1) * num_layers)) - grain_map_stitched[index_slice,:,:] = grain_maps[index] - confidence_stitched[index_slice,:,:] = confidence_maps[index] - Xs_stitched[index_slice,:,:] = Xss[index] - Zs_stitched[index_slice,:,:] = Zss[index] - Ys_stitched[index_slice,:,:] = Yss[index] + vol_shifts[index] + grain_map_stitched[index_slice, :, :] = grain_maps[index] + confidence_stitched[index_slice, :, :] = confidence_maps[index] + x_stitched[index_slice, :, :] = x_values[index] + z_stitched[index_slice, :, :] = z_values[index] + y_stitched[index_slice, :, :] = y_values[index] + vol_shifts[index] for save_type_i in save_type: if save_type_i == 'hdf5': print('Writing HDF5 data...') - hf = h5py.File(output_stem + '_assembled.h5', 'w') - hf.create_dataset('grain_map', data=grain_map_stitched) - hf.create_dataset('confidence', data=confidence_stitched) - hf.create_dataset('Xs', data=Xs_stitched) - hf.create_dataset('Ys', data=Ys_stitched) - hf.create_dataset('Zs', data=Zs_stitched) + h5_file = h5py.File(output_stem + '_assembled.h5', 'w') + h5_file.create_dataset('grain_map', data=grain_map_stitched) + h5_file.create_dataset('confidence', data=confidence_stitched) + h5_file.create_dataset('Xs', data=x_stitched) + h5_file.create_dataset('Ys', data=y_stitched) + h5_file.create_dataset('Zs', data=z_stitched) elif save_type_i == 'npz': print('Writing NPZ data...') - np.savez(output_stem + '_assembled.npz', - grain_map=grain_map_stitched, - confidence=confidence_stitched, - Xs=Xs_stitched,Ys=Ys_stitched,Zs=Zs_stitched) + np.savez( + output_stem + '_assembled.npz', + grain_map=grain_map_stitched, + confidence=confidence_stitched, + Xs=x_stitched, + Ys=y_stitched, + Zs=z_stitched, + ) elif save_type_i == 'vtk': print('Writing VTK data...') # VTK Dump - x_list=Xs_stitched[:,:,:].ravel() - y_list=Ys_stitched[:,:,:].ravel() - z_list=Zs_stitched[:,:,:].ravel() - - grainlist=grain_map_stitched[:,:,:].ravel() - conflist=confidence_stitched[:,:,:].ravel() - - num_pts=x_list.shape[0] - num_cells=(total_layers-1)*(num_rows-1)*(num_cols-1) - - with open(f'{output_stem}_assembled.vtk', 'w', 'utf-8') as f: - f.write('# vtk DataFile Version 3.0\n') - f.write('grainmap Data\n') - f.write('ASCII\n') - f.write('DATASET UNSTRUCTURED_GRID\n') - f.write(f'POINTS {num_pts} double\n') - - for i in np.arange(num_pts): - f.write('%e %e %e \n' %(x_list[i],y_list[i],z_list[i])) - - scale2=num_cols*num_rows - scale1=num_cols - - f.write('CELLS %d %d\n' % (num_cells, 9*num_cells)) - for k in np.arange(Xs_stitched.shape[0]-1): - for j in np.arange(Xs_stitched.shape[1]-1): - for i in np.arange(Xs_stitched.shape[2]-1): - base=scale2*k+scale1*j+i - p1=base - p2=base+1 - p3=base+1+scale1 - p4=base+scale1 - p5=base+scale2 - p6=base+scale2+1 - p7=base+scale2+scale1+1 - p8=base+scale2+scale1 - - f.write('8 %d %d %d %d %d %d %d %d \n' \ - %(p1,p2,p3,p4,p5,p6,p7,p8)) - - - f.write('CELL_TYPES %d \n' % (num_cells)) + x_list = x_stitched[:, :, :].ravel() + y_list = y_stitched[:, :, :].ravel() + z_list = z_stitched[:, :, :].ravel() + + grainlist = grain_map_stitched[:, :, :].ravel() + conflist = confidence_stitched[:, :, :].ravel() + + num_pts = x_list.shape[0] + num_cells = (total_layers - 1) * (num_rows - 1) * (num_cols - 1) + + with open(f'{output_stem}_assembled.vtk', 'w', encoding='utf-8') as fout: + fout.write('# vtk DataFile Version 3.0\n') + fout.write('grainmap Data\n') + fout.write('ASCII\n') + fout.write('DATASET UNSTRUCTURED_GRID\n') + fout.write(f'POINTS {num_pts} double\n') + + for index in np.arange(num_pts): + fout.write(f'{x_list[index]} {y_list[index]} {z_list[index]} \n') + + scale2 = num_cols * num_rows + scale1 = num_cols + + fout.write(f'CELLS {num_cells} {9 * num_cells}\n') + for k in np.arange(x_stitched.shape[0] - 1): + for j in np.arange(x_stitched.shape[1] - 1): + for i in np.arange(x_stitched.shape[2] - 1): + base = scale2 * k + scale1 * j + i + points = [ + base, + base + 1, + base + 1 + scale1, + base + scale1, + base + scale2, + base + scale2 + 1, + base + scale2 + scale1 + 1, + base + scale2 + scale1, + ] + + fout.write(f'8 {[str(p) for p in points].join(" ")}') + + fout.write(f'CELL_TYPES {num_cells} \n') for i in np.arange(num_cells): - f.write('12 \n') + fout.write('12 \n') - f.write('POINT_DATA %d \n' % (num_pts)) - f.write('SCALARS grain_id int \n') - f.write('LOOKUP_TABLE default \n') + fout.write(f'POINT_DATA {num_pts} \n') + fout.write('SCALARS grain_id int \n') + fout.write('LOOKUP_TABLE default \n') for i in np.arange(num_pts): - f.write('%d \n' %(grainlist[i])) + fout.write(f'{grainlist[i]} \n') - f.write('FIELD FieldData 1 \n' ) - f.write('confidence 1 %d float \n' % (num_pts)) + fout.write('FIELD FieldData 1 \n') + fout.write(f'confidence 1 {num_pts} float \n') for i in np.arange(num_pts): - f.write('%e \n' %(conflist[i])) + fout.write(f'{conflist[i]} \n') else: print('Not a valid save option, npz, vtk, or hdf5 allowed.') - return grain_map_stitched, confidence_stitched, Xs_stitched, Ys_stitched, \ - Zs_stitched - - - -# # assume that if os has fork, it will be used by multiprocessing. -# # note that on python > 3.4 we could use multiprocessing get_start_method and -# # set_start_method for a cleaner implementation of this functionality. -# _multiprocessing_start_method = 'fork' if hasattr(os, 'fork') else 'spawn' - -# if __name__ == '__main__': -# LOG_LEVEL = logging.INFO -# FORMAT="%(relativeCreated)12d [%(process)6d/%(thread)6d] %(levelname)8s: %(message)s" - -# logging.basicConfig(level=LOG_LEVEL, format=FORMAT) - -# # Setting the root log level via logging.basicConfig() doesn't always work. -# # The next line ensures that it will get set. -# logging.getLogger().setLevel(LOG_LEVEL) - -# args = parse_args() - -# if len(args.inst_profile) > 0: -# from hexrd.utils import profiler - -# logging.debug("Instrumenting functions") -# profiler.instrument_all(args.inst_profile) - -# if args.force_spawn_multiprocessing: -# _multiprocessing_start_method = 'spawn' - -# controller = build_controller(args) -# main(args, controller) -# del controller - -# if len(args.inst_profile) > 0: -# logging.debug("Dumping profiler results") -# profiler.dump_results(args.inst_profile) + return ( + grain_map_stitched, + confidence_stitched, + x_stitched, + y_stitched, + z_stitched, + )