-
Notifications
You must be signed in to change notification settings - Fork 0
/
finetune.py
253 lines (204 loc) · 10 KB
/
finetune.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
import argparse
from loader import MoleculeDataset
from torch_geometric.loader import DataLoader
from torchinfo import summary
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from tqdm import tqdm
import numpy as np
from model import GNN_graphpred
from sklearn.metrics import roc_auc_score
from splitters import scaffold_split, random_split, random_scaffold_split
import pandas as pd
import os
import shutil
import wandb
criterion = nn.BCEWithLogitsLoss(reduction="none")
# torch.set_float32_matmul_precision('high')
def train(model, device, loader, optimizer):
model.train()
for step, batch in enumerate(loader):
batch = batch.to(device)
pred = model(batch.x, batch.edge_index, batch.edge_attr, batch.batch)
y = batch.y.view(pred.shape).to(torch.float64)
#Whether y is non-null or not.
is_valid = y**2 > 0
#Loss matrix
loss_mat = criterion(pred.double(), (y+1)/2)
#loss matrix after removing null target
loss_mat = torch.where(is_valid, loss_mat, torch.zeros(loss_mat.shape).to(loss_mat.device).to(loss_mat.dtype))
optimizer.zero_grad()
loss = torch.sum(loss_mat)/torch.sum(is_valid)
loss.backward()
optimizer.step()
def eval(model, device, loader):
model.eval()
y_true = []
y_scores = []
for step, batch in enumerate(loader):
batch = batch.to(device)
with torch.no_grad():
pred = model(batch.x, batch.edge_index, batch.edge_attr, batch.batch)
y_true.append(batch.y.view(pred.shape))
y_scores.append(pred)
y_true = torch.cat(y_true, dim = 0).cpu().numpy()
y_scores = torch.cat(y_scores, dim = 0).cpu().numpy()
roc_list = []
for i in range(y_true.shape[1]):
#AUC is only defined when there is at least one positive data.
if np.sum(y_true[:,i] == 1) > 0 and np.sum(y_true[:,i] == -1) > 0:
is_valid = y_true[:,i]**2 > 0
roc_list.append(roc_auc_score((y_true[is_valid,i] + 1)/2, y_scores[is_valid,i]))
if len(roc_list) < y_true.shape[1]:
print("Some target is missing!")
print("Missing ratio: %f" %(1 - float(len(roc_list))/y_true.shape[1]))
return sum(roc_list)/len(roc_list) #y_true.shape[1]
def main():
# Training settings
parser = argparse.ArgumentParser(description='PyTorch implementation of pre-training of graph neural networks')
parser.add_argument('--device', type=int, default=0,
help='which gpu to use if any (default: 0)')
parser.add_argument('--batch_size', type=int, default=32,
help='input batch size for training (default: 32)')
parser.add_argument('--lr', type=float, default=1e-3,
help='learning rate (default: 0.001)')
parser.add_argument('--lr_scale', type=float, default=1,
help='relative learning rate for the feature extraction layer (default: 1)')
parser.add_argument('--decay', type=float, default=1e-4,
help='weight decay (default: 0)')
parser.add_argument('--num_layer', type=int, default=2,
help='number of GNN message passing layers (default: 5).')
parser.add_argument('--emb_dim', type=int, default=12,
help='embedding dimensions (default: 12)')
parser.add_argument('--dropout_ratio', type=float, default=0.1,
help='dropout ratio (default: 0.1)')
parser.add_argument('--graph_pooling', type=str, default="mean",
help='graph level pooling (sum, mean, max, set2set, attention)')
parser.add_argument('--JK', type=str, default="last",
help='how the node features across layers are combined. last, sum, max or concat')
parser.add_argument('--gnn_type', type=str, default="gin", help = "gin/gcn/gat/graphsage")
parser.add_argument('--dataset', type=str, default='bbbp', help='root directory of dataset. For now, only classification.')
parser.add_argument('--input_model_file', type=str, default="", help='filename to read the model (if there is any)')
parser.add_argument('--filename', type=str, default='', help='output filename')
parser.add_argument('--seed', type=int, default=42, help = "Seed for splitting the dataset.")
parser.add_argument('--runseed', type=int, default=0, help = "Seed for minibatch selection, random initialization.")
parser.add_argument('--split', type=str, default="scaffold", help = "random or scaffold or random_scaffold")
parser.add_argument('--eval_train', type=int, default=1, help='evaluating training or not')
parser.add_argument('--num_workers', type=int, default=32, help='number of workers for dataset loading')
parser.add_argument('--kan_mlp', type = str, default='mlp', help="mlp or kan")
parser.add_argument('--kan_mp', type = str, default='none', help="kan or none")
parser.add_argument('--grid', type = int, default = 5, help="bspline grid")
parser.add_argument('--k', type = int, default = 1, help="bspline order")
parser.add_argument('--neuron_fun', type = str, default = 'none', help="kan's neuron_fun, in mean or sum")
args = parser.parse_args()
# Initialize wandb
wandb.init(project="ICLR25_final", config=args)
config = wandb.config
torch.manual_seed(args.runseed)
np.random.seed(args.runseed)
device = torch.device("cuda:" + str(args.device)) if torch.cuda.is_available() else torch.device("cpu")
if torch.cuda.is_available():
torch.cuda.manual_seed_all(args.runseed)
#Bunch of classification tasks
if args.dataset == "tox21":
num_tasks = 12
epoch_num = 100
elif args.dataset == "hiv":
num_tasks = 1
epoch_num = 100
elif args.dataset == "pcba":
num_tasks = 128
epoch_num = 100
elif args.dataset == "muv":
num_tasks = 17
epoch_num = 50
elif args.dataset == "bace":
num_tasks = 1
epoch_num = 100
elif args.dataset == "bbbp":
num_tasks = 1
epoch_num = 100
elif args.dataset == "toxcast":
num_tasks = 617
epoch_num = 100
elif args.dataset == "sider":
num_tasks = 27
epoch_num = 100
elif args.dataset == "clintox":
num_tasks = 2
epoch_num = 300
else:
raise ValueError("Invalid dataset name.")
dataset = MoleculeDataset("dataset/" + args.dataset, dataset=args.dataset)
print(args.dataset)
if args.split == "scaffold":
smiles_list = pd.read_csv('dataset/' + args.dataset + '/smiles.csv', header=None)[0].tolist()
train_dataset, valid_dataset, test_dataset = scaffold_split(dataset, smiles_list, null_value=0, frac_train=0.8,frac_valid=0.1, frac_test=0.1)
print("scaffold")
elif args.split == "random":
train_dataset, valid_dataset, test_dataset = random_split(dataset, null_value=0, frac_train=0.8,frac_valid=0.1, frac_test=0.1, seed = args.seed)
print("random")
elif args.split == "random_scaffold":
smiles_list = pd.read_csv('dataset/' + args.dataset + '/smiles.csv', header=None)[0].tolist()
train_dataset, valid_dataset, test_dataset = random_scaffold_split(dataset, smiles_list, null_value=0, frac_train=0.8,frac_valid=0.1, frac_test=0.1, seed = args.seed)
print("random scaffold")
else:
raise ValueError("Invalid split option.")
print(train_dataset[0])
train_loader = DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True, num_workers=args.num_workers)
val_loader = DataLoader(valid_dataset, batch_size=args.batch_size, shuffle=False, num_workers=args.num_workers)
test_loader = DataLoader(test_dataset, batch_size=args.batch_size, shuffle=False, num_workers=args.num_workers)
#set up model
model = GNN_graphpred(args.num_layer, args.emb_dim, num_tasks,
JK=args.JK, drop_ratio=args.dropout_ratio,
graph_pooling=args.graph_pooling, gnn_type=args.gnn_type,
kan_mlp = args.kan_mlp, kan_mp= args.kan_mp, grid = args.grid, k = args.k, neuron_fun= args.neuron_fun)
if not args.input_model_file == "":
print(args.input_model_file)
model.from_pretrained(args.input_model_file, device)
model.to(device)
#set up optimizer
#different learning rate for different part of GNN
model_param_group = []
model_param_group.append({"params": model.gnn.parameters()})
#model_param_group.append({"params": model.node_imp_estimator.parameters()})
if args.graph_pooling == "attention":
model_param_group.append({"params": model.pool.parameters(), "lr": args.lr*args.lr_scale})
model_param_group.append({"params": model.graph_pred_linear.parameters(), "lr": args.lr*args.lr_scale})
optimizer = optim.Adam(model_param_group, lr=args.lr, weight_decay=args.decay)
print(optimizer)
summary(model)
train_acc_list = []
val_acc_list = []
test_acc_list = []
for epoch in range(1, epoch_num+1):
print("====epoch " + str(epoch))
train(model, device, train_loader, optimizer)
print("====Evaluation")
if args.eval_train:
train_acc = eval(model, device, train_loader)
else:
print("omit the training accuracy computation")
train_acc = 0
val_acc = eval(model, device, val_loader)
test_acc = eval(model, device, test_loader)
val_acc_list.append(val_acc)
test_acc_list.append(test_acc)
train_acc_list.append(train_acc)
print("train: %.4f val: %.4f test: %.4f" %
(train_acc, val_acc, test_acc))
print("")
# Log metrics to wandb
wandb.log({
f'train_acc_{args.dataset}': train_acc,
f'val_acc_{args.dataset}': val_acc,
f'test_acc_{args.dataset}': test_acc,
})
with open('result.log', 'a+') as f:
f.write(args.dataset + ' ' + str(args.runseed) + ' ' + str(np.array(test_acc_list)[-1]))
f.write('\n')
if __name__ == "__main__":
main()
wandb.finish()