Skip to content

Calculate the RMSD between two antibody structure (including nanobody and antibody).

License

Notifications You must be signed in to change notification settings

HICUELA/ab_rmsd

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

39 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

AB RMSD

cover

Table of Contents

About

check here for a chinese tutorial.

Calculate the RMSD between two antibody structure (including nanobody and antibody).

Getting Started

First, install abnumber using conda.

conda install -c bioconda abnumber

Then, install ab_rmsd from github.

pip install git+https://github.com/pengzhangzhi/ab_rmsd.git

[Optional] DockQ

If you want to calculate the DockQ between complex structures, run the following command.

cd DockQ
make

Usage

Calculate the RMSD between predicted and native nanobody structure.

from ab_rmsd import calc_ab_rmsd

# two example pdb files are provided in the `example` folder.
native = "example/7d6y_1_B.pdb"
pred = "example/pred_7d6y_1_B.pdb"
rmsd = calc_ab_rmsd(native,pred)
print(rmsd)

"""
output:
{'CDRH1': tensor(0.3136), 'CDRH2': tensor(0.0898), 'CDRH3': tensor(4.3704), 'fv-H': tensor(0.6426)}
"""

In the terminal:

abrmsd --pred pred_7d6y_1_B.pdb --native 7d6y_1_B.pdb --verbose

# Output:
[INFO] Renumbered chain B (H)
[INFO] Renumbered chain A (H)
    _    _       ____  __  __ ____  ____  
   / \  | |__   |  _ \|  \/  / ___||  _ \ 
  / _ \ | '_ \  | |_) | |\/| \___ \| | | |
 / ___ \| |_) | |  _ <| |  | |___) | |_| |
/_/   \_\_.__/  |_| \_\_|  |_|____/|____/ 

>>> Result
Frag    RMSD(Å)
CDRH1   0.3136
CDRH2   0.0898
CDRH3   4.3704
fv-H    0.6426
>>> End

Calculate the RMSD between paired antibody structures (containing heavy and light chains).

from ab_rmsd import calc_ab_rmsd

# two example pdb files are provided in the `exampl`e folder.
native = "example/7s0b_.pdb"
pred = "example/pred_7s0b_.pdb"
rmsd = calc_ab_rmsd(native,pred)
print(rmsd)

"""
output:
{
    'CDRH1': tensor(25.6173), 'CDRH2': tensor(15.5819), 'CDRH3': tensor(25.7562), 'fv-H': tensor(15.9964), 
    'CDRL1': tensor(11.8419), 'CDRL2': tensor(13.8057), 'CDRL3': tensor(17.1446), 'fv-L': tensor(15.9478)
}
"""

Calculate the DockQ scores between predicted and native complex structure.

from DockQ.DockQ import calc_DockQ

scores = calc_DockQ(model='example/pred_7s0b_.pdb',native='example/7s0b_.pdb')
print(scores)
"""
The first four scores are usually used to evaluate the docking performance.
{
    'DockQ': 0.011549873197136384, 
    'irms': 17.429353912635577,
    'Lrms': 50.73969606449461, 
    'fnat': 0.0,
    'nat_correct': 0, 'nat_total': 55, 'fnonnat': 1.0, 
    'nonnat_count': 9, 'model_total': 9, 
    'chain1': 'A', 'chain2': 'B', 'len1': 121, 
    'len2': 107, 'class1': 'receptor', 'class2': 'ligand'
}
"""

Use the cli to calculate the DockQ score.

./DockQ/DockQ.py example/pred_7s0b_.pdb example/7s0b_.pdb

TODOs

  • add DockQ as an evaluation for heavy and light chain complex structure.
  • for multi-chain antibody, superimpose each chain seperately and calculate the RMSD. instead of superimposing the complex structure.

Credits

About

Calculate the RMSD between two antibody structure (including nanobody and antibody).

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 67.7%
  • C 25.2%
  • Perl 6.8%
  • Other 0.3%