Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

PermissionError: [Errno 13] Permission denied: #9

Open
sunsunshark opened this issue Nov 18, 2023 · 1 comment
Open

PermissionError: [Errno 13] Permission denied: #9

sunsunshark opened this issue Nov 18, 2023 · 1 comment

Comments

@sunsunshark
Copy link

When I started training using my data,such an error occurred
data:
centered: false
dataset: AAPM
image_size: 256
is_complex: false
is_multi: false
num_channels: 1
random_flip: true
root: /media/sun/tomo/AAPM_data/256
uniform_dequantization: false
device: !!python/object/apply:torch.device

  • cuda
  • 0
    eval:
    batch_size: 8
    begin_ckpt: 50
    bpd_dataset: test
    enable_bpd: false
    enable_loss: true
    enable_sampling: true
    end_ckpt: 96
    num_samples: 50000
    model:
    attention_type: ddpm
    attn_resolutions: !!python/tuple
    • 16
      beta_max: 20.0
      beta_min: 0.1
      ch_mult: !!python/tuple
    • 1
    • 2
    • 2
    • 2
      conditional: true
      conv_size: 3
      dropout: 0.0
      ema_rate: 0.999
      embedding_type: fourier
      fir: true
      fir_kernel:
    • 1
    • 3
    • 3
    • 1
      fourier_scale: 16
      init_scale: 0.0
      name: ncsnpp
      nf: 128
      nonlinearity: swish
      normalization: GroupNorm
      num_res_blocks: 4
      num_scales: 2000
      progressive: none
      progressive_combine: sum
      progressive_input: residual
      resamp_with_conv: true
      resblock_type: biggan
      scale_by_sigma: true
      sigma_max: 378
      sigma_min: 0.01
      skip_rescale: true
      optim:
      beta1: 0.9
      eps: 1.0e-08
      grad_clip: 1.0
      lr: 0.0002
      optimizer: Adam
      warmup: 5000
      weight_decay: 0
      sampling:
      corrector: langevin
      method: pc
      n_steps_each: 1
      noise_removal: true
      predictor: reverse_diffusion
      probability_flow: false
      snr: 0.075
      seed: 42
      training:
      batch_size: 1
      continuous: true
      epochs: 1000
      eval_freq: 100
      likelihood_weighting: false
      log_freq: 25
      reduce_mean: false
      sde: vesde
      snapshot_freq: 50000
      snapshot_freq_for_preemption: 5000
      snapshot_sampling: true

Traceback (most recent call last):
File "E:\py2\DiffusionMBIR-main\main.py", line 71, in
app.run(main)
File "D:\Anaconda\envs\diffusion-mbir\lib\site-packages\absl\app.py", line 312, in run
_run_main(main, args)
File "D:\Anaconda\envs\diffusion-mbir\lib\site-packages\absl\app.py", line 258, in _run_main
sys.exit(main(argv))
File "E:\py2\DiffusionMBIR-main\main.py", line 62, in main
run_lib.train(FLAGS.config, FLAGS.workdir)
File "E:\py2\DiffusionMBIR-main\run_lib.py", line 82, in train
state = restore_checkpoint(checkpoint_meta_dir, state, config.device)
File "E:\py2\DiffusionMBIR-main\utils.py", line 38, in restore_checkpoint
loaded_state = torch.load(ckpt_dir, map_location=device)
File "D:\Anaconda\envs\diffusion-mbir\lib\site-packages\torch\serialization.py", line 594, in load
with _open_file_like(f, 'rb') as opened_file:
File "D:\Anaconda\envs\diffusion-mbir\lib\site-packages\torch\serialization.py", line 230, in _open_file_like
return _open_file(name_or_buffer, mode)
File "D:\Anaconda\envs\diffusion-mbir\lib\site-packages\torch\serialization.py", line 211, in init
super(_open_file, self).init(open(name, mode))
PermissionError: [Errno 13] Permission denied: 'workdir\AAPM256\checkpoints-meta'

Process finished with exit code 1

How can I solve the problem?

@JoanNig
Copy link

JoanNig commented Sep 19, 2024

When I started training using my data,such an error occurred data: centered: false dataset: AAPM image_size: 256 is_complex: false is_multi: false num_channels: 1 random_flip: true root: /media/sun/tomo/AAPM_data/256 uniform_dequantization: false device: !!python/object/apply:torch.device

  • cuda

  • 0
    eval:
    batch_size: 8
    begin_ckpt: 50
    bpd_dataset: test
    enable_bpd: false
    enable_loss: true
    enable_sampling: true
    end_ckpt: 96
    num_samples: 50000
    model:
    attention_type: ddpm
    attn_resolutions: !!python/tuple

    • 16
      beta_max: 20.0
      beta_min: 0.1
      ch_mult: !!python/tuple
    • 1
    • 2
    • 2
    • 2
      conditional: true
      conv_size: 3
      dropout: 0.0
      ema_rate: 0.999
      embedding_type: fourier
      fir: true
      fir_kernel:
    • 1
    • 3
    • 3
    • 1
      fourier_scale: 16
      init_scale: 0.0
      name: ncsnpp
      nf: 128
      nonlinearity: swish
      normalization: GroupNorm
      num_res_blocks: 4
      num_scales: 2000
      progressive: none
      progressive_combine: sum
      progressive_input: residual
      resamp_with_conv: true
      resblock_type: biggan
      scale_by_sigma: true
      sigma_max: 378
      sigma_min: 0.01
      skip_rescale: true
      optim:
      beta1: 0.9
      eps: 1.0e-08
      grad_clip: 1.0
      lr: 0.0002
      optimizer: Adam
      warmup: 5000
      weight_decay: 0
      sampling:
      corrector: langevin
      method: pc
      n_steps_each: 1
      noise_removal: true
      predictor: reverse_diffusion
      probability_flow: false
      snr: 0.075
      seed: 42
      training:
      batch_size: 1
      continuous: true
      epochs: 1000
      eval_freq: 100
      likelihood_weighting: false
      log_freq: 25
      reduce_mean: false
      sde: vesde
      snapshot_freq: 50000
      snapshot_freq_for_preemption: 5000
      snapshot_sampling: true

Traceback (most recent call last): File "E:\py2\DiffusionMBIR-main\main.py", line 71, in app.run(main) File "D:\Anaconda\envs\diffusion-mbir\lib\site-packages\absl\app.py", line 312, in run _run_main(main, args) File "D:\Anaconda\envs\diffusion-mbir\lib\site-packages\absl\app.py", line 258, in _run_main sys.exit(main(argv)) File "E:\py2\DiffusionMBIR-main\main.py", line 62, in main run_lib.train(FLAGS.config, FLAGS.workdir) File "E:\py2\DiffusionMBIR-main\run_lib.py", line 82, in train state = restore_checkpoint(checkpoint_meta_dir, state, config.device) File "E:\py2\DiffusionMBIR-main\utils.py", line 38, in restore_checkpoint loaded_state = torch.load(ckpt_dir, map_location=device) File "D:\Anaconda\envs\diffusion-mbir\lib\site-packages\torch\serialization.py", line 594, in load with _open_file_like(f, 'rb') as opened_file: File "D:\Anaconda\envs\diffusion-mbir\lib\site-packages\torch\serialization.py", line 230, in _open_file_like return _open_file(name_or_buffer, mode) File "D:\Anaconda\envs\diffusion-mbir\lib\site-packages\torch\serialization.py", line 211, in init super(_open_file, self).init(open(name, mode)) PermissionError: [Errno 13] Permission denied: 'workdir\AAPM256\checkpoints-meta'

Process finished with exit code 1

How can I solve the problem?

Hello Sunshark, I have also encountered the same problem as you. Have you solved this problem? May I ask for your advice on a solution?

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants