forked from hclhkbu/NV-DVFS-Benchmark
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathanalytical.py
370 lines (302 loc) · 17.8 KB
/
analytical.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
import pandas as pd
import numpy as np
import sys, os
from settings import *
import argparse
import math
if not os.path.exists("csvs/analytical/cycles"):
os.makedirs("csvs/analytical/cycles")
if not os.path.exists("csvs/analytical/features"):
os.makedirs("csvs/analytical/features")
if not os.path.exists("csvs/analytical/results"):
os.makedirs("csvs/analytical/results")
parser = argparse.ArgumentParser()
parser.add_argument('--data-root', type=str, help='data file path', default='raw')
parser.add_argument('--benchmark-setting', type=str, help='gpu and dvfs setting', default='gtx980-low-dvfs')
parser.add_argument('--kernel-setting', type=str, help='kernel list', default='real-small-workload')
parser.add_argument('--method', type=str, help='analytical modeling method', default='qiang2018')
opt = parser.parse_args()
print opt
lowest_core = 500
lowest_mem = 500
gpucard = opt.benchmark_setting
kernel_setting = opt.kernel_setting
method = opt.method
data_root = opt.data_root
csv_perf = "csvs/%s/%s-%s-Performance.csv" % (data_root, gpucard, kernel_setting)
df = pd.read_csv(csv_perf, header = 0)
if 'gtx980' in gpucard:
GPUCONF = GTX980()
if 'gtx1080ti'in gpucard:
GPUCONF = GTX1080TI()
if 'titanx' in gpucard:
GPUCONF = TITANX()
if 'p100' in gpucard:
GPUCONF = P100()
if 'v100' in gpucard:
GPUCONF = V100()
# experimental test
pointer = []
extras = ['backpropBackward', 'binomialOptions', 'cfd', 'eigenvalues', 'gaussian', 'srad', 'dxtc', 'pathfinder', 'scanScanExclusiveShared', 'stereoDisparity']
df = df[~df.appName.isin(extras) & ~df.appName.isin(pointer) & (df.coreF>=lowest_core) & (df.memF>=lowest_mem)]
df = df.reset_index(drop=True)
df = df.sort_values(by = ['appName', 'coreF', 'memF'])
features = pd.DataFrame(columns=['appName', 'coreF', 'memF', 'n_shm_ld', 'n_shm_st', 'n_gld', 'n_gst', 'l2_miss', 'l2_hit', 'mem_insts', 'insts', 'act_util', 'L_DM', 'D_DM']) # real_cycle per round
features['appName'] = df['appName']
features['coreF'] = df['coreF']
features['memF'] = df['memF']
# shared memory information
features['n_shm_ld'] = df['shared_load_transactions'] / df['warps']
features['n_shm_st'] = df['shared_store_transactions'] / df['warps']
features['n_shm'] = features['n_shm_ld'] + features['n_shm_st']
# global memory information
features['n_gld'] = df['l2_read_transactions'] / df['warps']
features['n_gst'] = df['l2_write_transactions'] / df['warps']
# texture memory information
try:
features['tex_trans'] = df['tex_cache_transactions'] / df['warps']
features.loc[features['tex_trans'] < 0, 'tex_trans'] = 0
except Exception as e:
features['tex_trans'] = 0
# l2 information
features['l2_miss'] = (df['dram_read_transactions'] + df['dram_write_transactions']) / ((features['n_gst'] + features['n_gld']) * df['warps'])
features.loc[features['l2_miss'] > 1, 'l2_miss'] = 1
features['l2_hit'] = 1 - features['l2_miss']
# compute instructions
try:
features['fp_insts'] = df['inst_fp_32'] / (df['warps'] * 32.0)
features['dp_insts'] = df['inst_fp_64'] / (df['warps'] * 32.0)
except Exception as e:
print "No float/double instruction information..."
try:
features['int_insts'] = df['inst_integer'] / (df['warps'] * 32.0)
#features['insts'] = features['fp_insts'] + features['dp_insts'] * 2.0 + features['int_insts']
except Exception as e:
print "No integer instruction information..."
features['mem_insts'] = features['n_gld'] + features['n_gst'] + features['n_shm_ld'] + features['n_shm_st'] / 4.0
features['insts'] = df['inst_per_warp'] - features['mem_insts'] # + features['dp_insts'] * 3.0
features['branch_insts'] = df['cf_executed'] / (df['warps'] * 32.0)
# other parameters
features.loc[features['insts'] < 0, 'insts'] = 0
features['act_util'] = df['achieved_occupancy']
features['L_DM'] = GPUCONF.a_L_DM * df['coreF'] / df['memF'] + GPUCONF.b_L_DM
features['D_DM'] = (GPUCONF.a_D_DM / df['memF'] + GPUCONF.b_D_DM) * df['coreF'] / df['memF']
#features['L_DM'] = GPUCONF.a_L_DM * GPUCONF.CORE_FREQ * 1.0 / GPUCONF.MEM_FREQ + GPUCONF.b_L_DM # no dvfs effect
#features['D_DM'] = (GPUCONF.a_D_DM / GPUCONF.MEM_FREQ + GPUCONF.b_D_DM) * GPUCONF.CORE_FREQ * 1.0 / GPUCONF.MEM_FREQ # no dvfs effect
# add bias to model parameters
#features['L_DM'] = features['L_DM'] * 0.8
#features['D_DM'] = features['D_DM'] * 0.8
#features['act_util'] = features['act_util'] * 0.8
#features['l2_hit'] = features['l2_hit'] * 1.2
# remove shm part if hong2009
if method == 'hong2009':
filter_out_shm = features.n_shm == 0
features = features[filter_out_shm]
features = features.reset_index(drop=True)
df = df[filter_out_shm]
df = df.reset_index(drop=True)
# save featuress to csv/xlsx
features.to_csv("csvs/analytical/features/%s-%s-features.csv" % (gpucard, kernel_setting))
#writer = pd.ExcelWriter("csvs/analytical/features/%s-%s-features.xlsx" % (gpucard, kernel_setting))
#features.to_excel(writer, 'Sheet1')
#writer.save()
# other methodology
def hong2009(df):
# analytical model
cycles = pd.DataFrame(columns=['appName', 'coreF', 'memF', 'cold_miss', 'c_to_m', 'modelled_cycle', 'real_cycle', 'c1', 'c2', 'c3']) # real_cycle per round
cycles['appName'] = df['appName']
cycles['coreF'] = df['coreF']
cycles['memF'] = df['memF']
cycles['c_to_m'] = df['coreF'] * 1.0 / df['memF']
cycles['cold_miss'] = df['L_DM']
cycles['depart_delay'] = df['D_DM'] * df['l2_miss'] + GPUCONF.D_L2 * df['l2_hit']
cycles['mem_l'] = df['L_DM'] * df['l2_miss'] + GPUCONF.L_L2 * df['l2_hit']
cycles['N'] = GPUCONF.WARPS_MAX * df['act_util']
cycles['compute_cycles'] = df['insts'] * GPUCONF.D_INST
cycles['compute_cycles_per_period'] = cycles['compute_cycles'] / (df['n_gld'] + df['n_gst']) #* GPUCONF.D_INST
cycles['mem_cycles'] = cycles['depart_delay'] * (df['n_gld'] + df['n_gst'])
cycles['MWP_without_BW'] = cycles['mem_l'] / cycles['depart_delay']
cycles['MWP_peak_BW'] = cycles['mem_l'] / GPUCONF.SM_COUNT
#cycles['MWP'] = cycles[['MWP_without_BW','MWP_peak_BW', 'N']].min(axis=1)
cycles['MWP'] = cycles['MWP_without_BW']
cycles['CWP_without_OCC'] = (cycles['compute_cycles'] + cycles['mem_cycles']) / cycles['compute_cycles']
cycles['CWP'] = cycles[['CWP_without_OCC', 'N']].min(axis=1)
cycles['shm_insts'] = df['n_shm_ld'] + df['n_shm_st']
#cycles['mem_cycles'] = (df['n_gld'] + df['n_gst']) * cycles['mem_l'] * (GPUCONF.WARPS_MAX * df['act_util'] /cycles['MWP'])
#cycles['compute_cycles'] = df['insts'] * GPUCONF.D_INST
for idx, item in cycles.iterrows():
cycles.loc[idx, 'c1'] = cycles.loc[idx, 'mem_cycles'] + cycles.loc[idx, 'compute_cycles'] + cycles.loc[idx, 'compute_cycles'] / (df.loc[idx, 'n_gld'] + df.loc[idx, 'n_gst']) * (cycles.loc[idx, 'MWP'] - 1)
cycles.loc[idx, 'c2'] = cycles.loc[idx, 'mem_cycles'] * cycles.loc[idx, 'N'] / cycles.loc[idx, 'MWP'] + cycles.loc[idx, 'compute_cycles'] / (df.loc[idx, 'n_gld'] + df.loc[idx, 'n_gst']) * (cycles.loc[idx, 'MWP'] - 1)
cycles.loc[idx, 'c3'] = cycles.loc[idx, 'mem_l'] + cycles.loc[idx, 'compute_cycles'] * cycles.loc[idx, 'N']
if cycles.loc[idx, 'MWP'] == cycles.loc[idx, 'N'] and cycles.loc[idx, 'MWP'] == cycles.loc[idx, 'N']: # not enough warp
cycles.loc[idx, 'modelled_cycle'] = cycles.loc[idx, 'c1']
elif cycles.loc[idx, 'CWP'] >= cycles.loc[idx, 'MWP']: # memory bound
cycles.loc[idx, 'modelled_cycle'] = cycles.loc[idx, 'c2']
elif cycles.loc[idx, 'MWP'] >= cycles.loc[idx, 'CWP'] or cycles.loc[idx, 'compute_cycles'] > cycles.loc[idx, 'mem_cycles']: # compute bound
cycles.loc[idx, 'modelled_cycle'] = cycles.loc[idx, 'c3']
#compute_bound = cycles.loc[idx, 'compute_cycles'] * GPUCONF.WARPS_MAX * df.loc[idx, 'act_util'] + cycles.loc[idx, 'mem_l']
#memory_bound = cycles.loc[idx, 'mem_cycles'] + cycles.loc[idx, 'compute_cycles']
#if compute_bound > memory_bound:
# cycles.loc[idx, 'modelled_cycle'] = compute_bound
#else:
# cycles.loc[idx, 'modelled_cycle'] = memory_bound
#if df.loc[idx, 'act_util'] <= 0.38:
# cycles.loc[idx, 'modelled_cycle'] = cycles.loc[idx, 'mem_cycles'] + cycles.loc[idx, 'compute_cycles']
cycles = cycles.sort_values(by=['appName', 'c_to_m'])
return cycles
def song2013(df):
# analytical model
cycles = pd.DataFrame(columns=['appName', 'coreF', 'memF', 'cold_miss', 'c_to_m', 'modelled_cycle', 'real_cycle']) # real_cycle per round
cycles['appName'] = df['appName']
cycles['coreF'] = df['coreF']
cycles['memF'] = df['memF']
cycles['c_to_m'] = df['coreF'] * 1.0 / df['memF']
cycles['depart_delay'] = df['D_DM'] * df['l2_miss'] + GPUCONF.D_L2 * df['l2_hit']
cycles['mem_l'] = df['L_DM'] * df['l2_miss'] + GPUCONF.L_L2 * df['l2_hit']
# global load and store
cycles['g_load'] = cycles['mem_l'] + (df['n_gld'] - 1) * cycles['depart_delay']
cycles['g_store'] = cycles['mem_l'] + (df['n_gst'] - 1) * cycles['depart_delay']
# sync
cycles['sync'] = (df['act_util'] * GPUCONF.WARPS_MAX - 1) * cycles['depart_delay']
# compute
cycles['compute'] = GPUCONF.D_INST * 32.0 / GPUCONF.CORES_SM * df['insts']
# shared memory
cycles['shared'] = GPUCONF.D_sh * (df['n_shm_ld'] + df['n_shm_st']) * df['act_util'] * GPUCONF.WARPS_MAX
cycles['modelled_cycle'] = cycles['compute'] + cycles['g_load'] + cycles['g_store'] + cycles['compute'] * (df['act_util'] * GPUCONF.WARPS_MAX - 1) + cycles['shared'] + cycles['sync']
cycles = cycles.sort_values(by=['appName', 'c_to_m'])
return cycles
def qiang2018(df):
# analytical model
cycles = pd.DataFrame(columns=['appName', 'coreF', 'memF', 'cold_miss', 'c_to_m', 'type', 'modelled_cycle', 'real_cycle']) # real_cycle per round
cycles['appName'] = df['appName']
cycles['coreF'] = df['coreF']
cycles['memF'] = df['memF']
cycles['c_to_m'] = df['coreF'] * 1.0 / df['memF']
cycles['cold_miss'] = df['L_DM']
cycles['avg_mem_lat'] = ((df['L_DM'] + df['D_DM']) * (1 - df['l2_hit']) + GPUCONF.L_L2 * df['l2_hit'])
cycles['avg_mem_del'] = (df['D_DM'] * (1 - df['l2_hit']) + GPUCONF.D_L2 * df['l2_hit'])
#cycles['avg_mem_lat'] = (df['L_DM'] + df['D_DM']) # no L2 effect
#cycles['avg_mem_del'] = df['D_DM'] # no L2 effect
cycles['mem_del'] = (df['n_gld'] + df['n_gst']) * cycles['avg_mem_del'] * GPUCONF.WARPS_MAX * df['act_util'] # memory queue delay for all warps per round
cycles['mem_lat'] = (df['n_gld'] + df['n_gst']) * cycles['avg_mem_lat'] / 4.0 # memory latency for one warp per round
cycles['shm_del'] = GPUCONF.D_sh * (df['n_shm_ld'] + df['n_shm_st']) * df['act_util'] * GPUCONF.WARPS_MAX + GPUCONF.L_sh # shared queue delay for all warps per round
cycles['tex_del'] = df['tex_trans'] * df['act_util'] * GPUCONF.WARPS_MAX / GPUCONF.TEX_UNITS * GPUCONF.D_TEX
cycles['dp_del'] = df['dp_insts'] * df['act_util'] * GPUCONF.WARPS_MAX * GPUCONF.D_DP
#cycles['int_del'] = df['int_insts'] * df['act_util'] * GPUCONF.WARPS_MAX
cycles['branch_del'] = df['branch_insts'] * df['act_util'] * GPUCONF.WARPS_MAX * 32.0 * 0.5
#cycles['tex_del'] = 0
cycles['shm_offset'] = ((df['n_shm_ld'] + df['n_shm_st']) * 1.0 / (df['n_gld'] + df['n_gst'])) * GPUCONF.L_sh
cycles['shm_lat'] = (df['n_shm_ld'] + df['n_shm_st']) * GPUCONF.L_sh # shared latency for one warp per round
cycles['compute_del'] = GPUCONF.D_INST * (df['insts']) * df['act_util'] * 32.0 * GPUCONF.WARPS_MAX / GPUCONF.CORES_SM + GPUCONF.L_INST # compute delay for all warps per round
cycles['compute_offset'] = df['insts'] * 1.0 / (df['n_gld'] + df['n_gst']) * GPUCONF.L_INST
cycles['compute_lat'] = df['insts'] * GPUCONF.L_INST # compute latency for one warp per round
cycles['sm_del'] = (cycles['compute_del'] + cycles['shm_del'] + cycles['dp_del'])
#cycles['sm_del'] = (cycles['compute_del'] + cycles['shm_del'])
cycles['sm_lat'] = cycles['compute_lat'] + cycles['shm_lat']
#cycles['sm_op'] = df['insts'] * L_INST
cycles['insts'] = df['insts']
if "v100" in gpucard:
lack_thres = 0.25 # for v100, 0.25 gives better results for histogram.
else:
lack_thres = 0.3
for idx, item in cycles.iterrows():
# app using texture memory
if item.appName == 'convolutionTexture':
cycles.loc[idx, 'mem_del'] += cycles.loc[idx, 'tex_del']
# app using many branch instructions, strange for v100
if (item.appName in ['reduction']) and (not "v100" in gpucard):
cycles.loc[idx, 'sm_del'] += cycles.loc[idx, 'branch_del']
if cycles.loc[idx, 'sm_del'] > cycles.loc[idx, 'mem_del']:
cycles.loc[idx, 'modelled_cycle'] = cycles.loc[idx, 'sm_del'] #+ cycles.loc[idx, 'avg_mem_lat']
cycles.loc[idx, 'type'] = 'FULL_COMP'
else:
cycles.loc[idx, 'modelled_cycle'] = cycles.loc[idx, 'mem_del'] #+ cycles.loc[idx, 'avg_mem_lat']
cycles.loc[idx, 'type'] = 'FULL_MEM'
if (item.appName != 'nn') or (cycles.loc[idx, 'modelled_cycle'] < 2800):
cycles.loc[idx, 'modelled_cycle'] += cycles.loc[idx, 'cold_miss']
# L1/tex cache adjustment for v100
if ("v100" in gpucard) and (item.appName in ['matrixMulGlobal', 'conjugateGradient', 'histogram']):
cycles.loc[idx, 'modelled_cycle'] += cycles.loc[idx, 'tex_del']
# branch instruction adjustment for v100
if ("v100" in gpucard) and (item.appName in ['quasirandomGenerator']):
cycles.loc[idx, 'modelled_cycle'] = cycles.loc[idx, 'mem_lat'] + cycles.loc[idx, 'sm_lat']
if df.loc[idx, 'act_util'] <= lack_thres:
lack_wait = 0.5 * cycles.loc[idx, 'avg_mem_lat'] + cycles.loc[idx, 'compute_offset'] + cycles.loc[idx, 'avg_mem_del'] * GPUCONF.WARPS_MAX * df.loc[idx, 'act_util'] + 0.5 * cycles.loc[idx, 'avg_mem_lat'] + (cycles.loc[idx, 'compute_offset'] + cycles.loc[idx, 'avg_mem_lat']) * (df.loc[idx, 'n_gld'] + df.loc[idx, 'n_gst'] - 1) / 4.0
lack_no_wait = cycles.loc[idx, 'compute_offset'] * (GPUCONF.WARPS_MAX * df.loc[idx, 'act_util'] - 1) + (cycles.loc[idx, 'compute_offset'] + cycles.loc[idx, 'avg_mem_lat']) * (df.loc[idx, 'n_gld'] + df.loc[idx, 'n_gst']) / 4.0
if lack_wait > lack_no_wait:
cycles.loc[idx, 'modelled_cycle'] = lack_wait
cycles.loc[idx, 'type'] = 'LACK_WAIT'
else:
cycles.loc[idx, 'modelled_cycle'] = lack_no_wait
cycles.loc[idx, 'type'] = 'LACK_NO_WAIT'
cycles = cycles.sort_values(by=['appName', 'c_to_m'])
return cycles
if method == 'qiang2018':
cycles = qiang2018(features)
elif method == 'song2013':
cycles = song2013(features)
elif method == 'hong2009':
cycles = hong2009(features)
def print_kernel(cycles, kernel):
kernel_idx = cycles.appName == kernel
print cycles[kernel_idx][['real_cycle', 'modelled_cycle', 'mem_del', 'sm_del', 'tex_del', 'branch_del']]
cycles['exec_rounds'] = df['warps'] / (GPUCONF.WARPS_MAX * GPUCONF.SM_COUNT * df['achieved_occupancy'])
#cycles['exec_rounds'] = cycles['exec_rounds'].astype(int)
cycles['real_cycle'] = df['time/ms'] * df['coreF'] * 1000.0 / cycles['exec_rounds']
cycles['abe'] = abs(cycles['modelled_cycle'] - cycles['real_cycle']) / cycles['real_cycle']
#print_kernel(cycles, 'quasirandomGenerator')
# save results to csv/xlsx
cycles.to_csv("csvs/analytical/cycles/%s-%s-%s-cycles.csv" % (gpucard, kernel_setting, method))
#writer = pd.ExcelWriter("csvs/analytical/cycles/%s-%s-%s-cycles.xlsx" % (gpucard, kernel_setting, method))
#cycles.to_excel(writer, 'Sheet1')
#writer.save()
print "FULL COMP error:", np.mean(cycles[cycles["type"] == "FULL_COMP"]["abe"])
print "FULL MEM error:", np.mean(cycles[cycles["type"] == "FULL_MEM"]["abe"])
print "LACK WAIT error:", np.mean(cycles[cycles["type"] == "LACK_WAIT"]["abe"])
print "LACK NO WAIT error:", np.mean(cycles[cycles["type"] == "LACK_NO_WAIT"]["abe"])
kernels = features['appName'].drop_duplicates()
kernels.sort_values(inplace=True)
f = open("csvs/analytical/results/%s-%s-%s-dvfs.csv" % (gpucard, kernel_setting, method), "w")
f.write("kernel,type,coreF,memF,real,predict,error\n")
for idx, item in cycles.iterrows():
kernel = item['appName']
coreF = item['coreF']
memF = item['memF']
real = item['real_cycle']
predict = item['modelled_cycle']
error = abs(item['real_cycle'] - item['modelled_cycle']) / item['real_cycle']
kernel_type = item['type']
f.write("%s,%s,%d,%d,%f,%f,%f\n" % (kernel, kernel_type, coreF, memF, real, predict, error))
f.close()
f = open("csvs/analytical/results/%s-%s-%s-aver.csv" % (gpucard, kernel_setting, method), "w")
f.write("kernel,ape\n")
for kernel in kernels:
tmp_cycles = cycles.loc[df['appName'] == kernel]
tmp_ape = np.mean(tmp_cycles['abe'])
tmp_err_std = np.std(tmp_cycles['abe'])
print "%s:%f, %f" % (kernel, tmp_ape, tmp_err_std)
f.write("%s,%f\n" % (kernel, tmp_ape))
f.close()
errors = []
for i in range(len(cycles['modelled_cycle'])):
if cycles['appName'][i] in pointer or cycles['appName'][i] in extras:
continue
#if cycles['coreF'][i] >= 500 and cycles['memF'][i] >= 500:
errors.append(cycles['abe'][i])
pos_50 = int(len(errors) * 0.50) - 1
pos_75 = int(len(errors) * 0.75) - 1
pos_95 = int(len(errors) * 0.95) - 1
errors = np.sort(errors)
print "50th percentile:", errors[pos_50]
print "75th percentile:", errors[pos_75]
print "95th percentile:", errors[pos_95]
print "MAPE of %d samples: %f" % (len(errors), np.mean(errors))
print "Error less than 10%%: is %f" % (len([e for e in errors if e <= 0.1]) * 1.0 / len(errors))
print "Error less than 15%%: is %f" % (len([e for e in errors if e <= 0.15]) * 1.0 / len(errors))
print "Error less than 20%%: is %f" % (len([e for e in errors if e <= 0.2]) * 1.0 / len(errors))
#if 'gtx980' in gpucard:
# print "sensitive error:", (np.mean(errors) - 0.03854) * 100
#if 'gtx1080ti'in gpucard:
# print "sensitive error:", (np.mean(errors) - 0.08596) * 100
#if 'p100' in gpucard:
# print "sensitive error:", (np.mean(errors) - 0.10378) * 100