-
Notifications
You must be signed in to change notification settings - Fork 1
/
parse.py
260 lines (246 loc) · 7.46 KB
/
parse.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
from torch import optim, nn
import torch.nn.functional as F
from models import (
GCN,
GAT,
GIN,
HAN,
HGT,
HeteroRGCN,
BGCN
)
from pyhealth.models import (
RNN,
Transformer,
AdaCare,
ConCare,
StageNet,
Deepr,
Agent,
GRASP,
SparcNet,
MICRON,
MoleRec,
GAMENet,
SafeDrug
)
def parse_optimizer(config_optim, model):
opt_method = config_optim["opt_method"].lower()
alpha = config_optim["lr"]
weight_decay = config_optim["weight_decay"]
if opt_method == "adagrad":
optimizer = optim.Adagrad(
model.parameters(),
lr=alpha,
lr_decay=weight_decay,
weight_decay=weight_decay,
)
elif opt_method == "adadelta":
optimizer = optim.Adadelta(
model.parameters(),
lr=alpha,
weight_decay=weight_decay,
)
elif opt_method == "adam":
optimizer = optim.Adam(
model.parameters(),
lr=alpha,
weight_decay=weight_decay,
)
else:
optimizer = optim.SGD(
model.parameters(),
lr=alpha,
weight_decay=weight_decay,
)
return optimizer
def parse_gnn_model(config_gnn, g, tasks=None, causal=False):
gnn_name = config_gnn["name"]
if gnn_name == "GAT":
n_layers = config_gnn["num_layers"]
n_heads = config_gnn["num_heads"]
n_out_heads = config_gnn["num_out_heads"]
heads = ([n_heads] * n_layers) + [n_out_heads]
return GAT(
n_layers=config_gnn["num_layers"],
in_dim=config_gnn["in_dim"],
hidden_dim=config_gnn["hidden_dim"],
out_dim=config_gnn["out_dim"],
heads=heads,
activation=F.leaky_relu,
feat_drop=config_gnn["feat_drop"],
attn_drop=config_gnn["attn_drop"],
negative_slope=config_gnn["negative_slope"],
tasks=tasks,
causal=causal,
residual=False
)
elif gnn_name == "GCN":
return GCN(
in_dim=config_gnn["in_dim"],
hidden_dim=config_gnn["hidden_dim"],
out_dim=config_gnn["out_dim"],
n_layers=config_gnn["num_layers"],
activation=F.relu,
dropout=config_gnn["feat_drop"],
tasks=tasks,
causal=causal
)
elif gnn_name == "GIN":
return GIN(
in_dim=config_gnn["in_dim"],
hidden_dim=config_gnn["hidden_dim"],
out_dim=config_gnn["out_dim"],
num_layers=config_gnn["num_layers"],
num_mlp_layers=config_gnn["num_mlp_layers"],
final_dropout=config_gnn["feat_drop"],
neighbor_pooling_type=config_gnn["neighbor_pooling_type"],
tasks=tasks,
causal=causal
)
elif gnn_name == "HAN":
n_layers = config_gnn["num_layers"]
n_heads = config_gnn["num_heads"]
n_out_heads = config_gnn["num_out_heads"]
heads = ([n_heads] * n_layers) + [n_out_heads]
return HAN(
num_meta_paths=config_gnn["num_meta_paths"],
in_size=config_gnn["in_dim"],
hidden_size=config_gnn["hidden_dim"],
out_size=config_gnn["out_dim"],
num_heads=heads,
dropout=config_gnn["feat_drop"]
)
elif gnn_name == "HGT":
return HGT(
g,
n_inp=config_gnn["in_dim"],
n_hid=config_gnn["hidden_dim"],
n_out=config_gnn["out_dim"],
n_layers=config_gnn["num_layers"],
n_heads=config_gnn["num_heads"],
dropout=config_gnn["feat_drop"],
tasks=tasks,
causal=causal
)
elif gnn_name == "HetRGCN":
return HeteroRGCN(
g,
in_dim=config_gnn["in_dim"],
hidden_dim=config_gnn["hidden_dim"],
out_dim=config_gnn["out_dim"],
n_layers=config_gnn["num_layers"],
tasks=tasks,
causal=causal
)
elif gnn_name == "BGCN":
priors = {
'prior_mu': config_gnn["prior_mu"],
'prior_sigma': config_gnn["prior_sigma"],
'posterior_mu_initial': config_gnn["posterior_mu_initial"],
'posterior_rho_initial': config_gnn["posterior_rho_initial"],
}
return BGCN(
in_dim=config_gnn["in_dim"],
hidden_dim=config_gnn["hidden_dim"],
out_dim=config_gnn["out_dim"],
n_layers=config_gnn["num_layers"],
activation=F.relu,
dropout=config_gnn["feat_drop"],
priors=priors
)
else:
raise NotImplementedError("This GNN model is not implemented")
def parse_baselines(dataset, baseline_name, mode, label_key):
if baseline_name == "AdaCare":
return AdaCare(
dataset=dataset,
feature_keys=["conditions", "procedures"],
label_key=label_key,
use_embedding=[True, True],
mode=mode,
)
elif baseline_name == "Transformer":
return Transformer(
dataset=dataset,
feature_keys=["conditions", "procedures"],
label_key=label_key,
mode=mode,
)
elif baseline_name == "ConCare":
return ConCare(
dataset=dataset,
feature_keys=["conditions", "procedures"],
label_key=label_key,
use_embedding=[True, True],
mode=mode
)
elif baseline_name == "DrAgent":
return Agent(
dataset=dataset,
feature_keys=["conditions", "procedures"],
label_key=label_key,
mode=mode
)
elif baseline_name == "Deepr":
return Deepr(
dataset=dataset,
feature_keys=["conditions", "procedures", "prescriptions"],
label_key=label_key,
mode=mode
)
elif baseline_name == "RNN":
return RNN(
dataset=dataset,
feature_keys=["conditions", "procedures"],
label_key=label_key,
mode=mode,
)
elif baseline_name == "GRSAP":
return GRASP(
dataset=dataset,
feature_keys=["conditions", "procedures"],
label_key=label_key,
use_embedding=[True, True],
mode=mode
)
elif baseline_name == "StageNet":
return StageNet(
dataset=dataset,
feature_keys=["conditions", "procedures"],
label_key=label_key,
mode=mode,
)
elif baseline_name == "SparcNet":
return SparcNet(
dataset=dataset,
feature_keys=["conditions", "procedures"],
label_key=label_key,
mode=mode,
)
elif baseline_name == "MICRON":
return MICRON(
dataset=dataset
)
elif baseline_name == "MoleRec":
return MoleRec(
dataset=dataset
)
elif baseline_name == "GAMENet":
return GAMENet(
dataset=dataset
)
elif baseline_name == "SafeDrug":
return SafeDrug(
dataset=dataset
)
else:
raise NotImplementedError("This baseline is not implemented")
def parse_loss(config_train):
loss_name = config_train["loss"]
if loss_name == "BCE":
return nn.BCELoss()
elif loss_name == "CE":
return nn.CrossEntropyLoss()
else:
raise NotImplementedError("This Loss is not implemented")