-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
575 lines (525 loc) · 29.3 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
import argparse
import collections
import os
from pprint import pprint
import pandas as pd
import torch
from tqdm.std import trange, tqdm
from fol.appfoq import compute_final_loss
from data_helper import TaskManager, BenchmarkFormManager, all_normal_form, BenchmarkWholeManager
from fol import BetaEstimator, BoxEstimator, LogicEstimator, NLKEstimator, BetaEstimator4V, order_bounds
from fol.estimator_fuzzle import FuzzleEstiamtor
from fol.estimator_wasserstein import WassersteinEstimator
from utils.util import (Writer, load_data_with_indexing, load_task_manager, read_from_yaml,
set_global_seed)
parser = argparse.ArgumentParser()
parser.add_argument('--config', default='config/papers/NELL.yaml', type=str)
parser.add_argument('--prefix', default='EFO-1_train', type=str)
parser.add_argument('--checkpoint_path', default= None, type=str)
parser.add_argument('--load_step', default=None, type=int)
#ToDo:new csv to store valid and test scores.
#ToDo:early stop by valid's MRR.
def proj_simplex_tensor(emb_grad, sum_demand=1):
# suitable for any dimension tensor
# and output is the tensor 's last dimension is a discrete probably distribution
# detailed proof for this projection algorithm ,please read https://arxiv.org/pdf/1309.1541.pdf
dim = emb_grad.shape[-1]
sort_a = torch.sort(emb_grad, descending=True)[0]
cssv = torch.cumsum(sort_a, dim=-1) - sum_demand
index = torch.arange(dim,device=emb_grad.device) + 1
cssv_d = sort_a - cssv / index > 0
rho = torch.sum(cssv_d, dim=-1, keepdim=True)
# select the suitable index
lam = torch.gather(cssv, -1, rho - 1) / rho
x = torch.relu(emb_grad - lam)
return torch.flatten(x, start_dim=-2)
def typestr2benchmarkname(type_str: str, mode=None, step=None):
if mode:
return f'eval_{mode}_{step}_{type_str}.csv'
else:
return f'eval_{type_str}.csv'
def log_benchmark(folder_path, id_list, percentage=False, mode=None, step=None):
queries = ["1p", "2p", "3p", "2i", "3i", "ip", "pi", "2in", "3in", "inp", "pin", "pni", "2u", "up"]
task_dist = {}
for i in range(len(queries)):
task_dist[i] = queries[i]
all_log = collections.defaultdict(lambda: collections.defaultdict(lambda: collections.defaultdict(float)))
for task_id in id_list:
type_str = f'type{task_id:04d}'
filename = typestr2benchmarkname(type_str, mode, step)
# real_index = all_formula.loc[all_formula['formula_id'] == f'type{id_str}'].index[0]
if os.path.exists(os.path.join(folder_path, filename)):
single_log = pd.read_csv(os.path.join(folder_path, filename))
index2metrics = single_log['Unnamed: 0']
for normal_form in single_log.columns:
if normal_form != 'Unnamed: 0':
for index in range(len(single_log[normal_form])):
if percentage and index2metrics[index] != 'num_queries':
all_log[index2metrics[index]][normal_form][task_id] = single_log[normal_form][index] * 100
else:
all_log[index2metrics[index]][normal_form][task_id] = single_log[normal_form][index]
for metric in all_log:
data_metric = pd.DataFrame.from_dict(all_log[metric])
if mode:
if metric == "MRR":
data_metric.insert(loc=0, column="task_name",value=pd.Series(["1p", "2p", "3p", "2i", "3i", "ip", "pi", "2in", "3in", "inp", "pin", "pni", "2u", "up"]))
epfo_list = [i for i in range(len(queries)) if "n" not in queries[i]]
n_list = [i for i in range(len(queries)) if "n" in queries[i]]
data_metric.loc["epfo_avg"] = data_metric.iloc[epfo_list].mean()
data_metric.loc["n_avg"] = data_metric.iloc[n_list].mean()
data_metric.to_csv(os.path.join(folder_path, f'all_formula_{mode}_{step}_{metric}.csv'))
else:
data_metric.to_csv(os.path.join(folder_path, f'all_formula_{metric}.csv'))
return all_log
def collect_steps_scores(folder_path, mode, steps, evaluate_steps):
# output MRR "DNF"
queries = ["1p", "2p", "3p", "2i", "3i", "ip", "pi", "2in", "3in", "inp", "pin", "pni", "2u", "up"]
step_log = collections.defaultdict(lambda: collections.defaultdict(float))
task_dist = {}
for i in range(len(queries)):
task_dist[i] = queries[i]
step_log["query_name"] = task_dist
for step in range(evaluate_steps, steps + evaluate_steps):
path_index = os.path.join(folder_path, f"all_formula_{mode}_{step}_MRR.csv")
if os.path.exists(path_index):
df_index = pd.read_csv(path_index)
step_log[f"{step}_DNF"] = df_index["DNF"]
print(df_index)
df_save = pd.DataFrame.from_dict(data=step_log)
queries = df_save["query_name"]
epfo_list = [i for i in range(len(queries)) if "n" not in queries[i]]
n_list = [i for i in range(len(queries)) if "n" in queries[i]]
df_save.loc["epfo_avg"] = df_save.iloc[epfo_list].mean()
df_save.loc["n_avg"] = df_save.iloc[n_list].mean()
df_save.to_csv(os.path.join(folder_path, f"all_{mode}.csv"))
return step_log
def train_step(model, opt, iterator):
model.train()
opt.zero_grad()
data = next(iterator)
emb_list, answer_list = [], []
union_emb_list, union_answer_list = [], []
for formula in data:
if 'u' in formula or 'U' in formula: # TODO: consider 'evaluate_union' in the future
union_emb_list.append(data[formula]['emb'])
union_answer_list.append(data[formula]['answer_set'])
else:
emb_list.append(data[formula]['emb'])
answer_list.extend(data[formula]['answer_set'])
for formula in data: #ToDo: why twice?
emb_list.append(data[formula]['emb'])
answer_list.extend(data[formula]['answer_set'])
pred_embedding = torch.cat(emb_list, dim=0)
all_positive_logit, all_negative_logit, all_subsampling_weight = model.criterion(pred_embedding, answer_list)
positive_loss, negative_loss = compute_final_loss(all_positive_logit, all_negative_logit, all_subsampling_weight)
loss = (positive_loss + negative_loss) / 2
loss.backward()
opt.step()
log = {
'po': positive_loss.item(),
'ne': negative_loss.item(),
'loss': loss.item()
}
if model.name == 'logic':
entity_embedding = model.entity_embeddings.weight.data
if model.bounded:
model.entity_embeddings.weight.data = order_bounds(entity_embedding)
else:
model.entity_embeddings.weight.data = torch.clamp(entity_embedding, 0, 1)
elif model.name == "wasserstein_pgd":
entity_embedding_dis = model.distribute(model.entity_embedding.data)
model.entity_embedding.data = proj_simplex_tensor(entity_embedding_dis)
#proj里已经拉平过
elif model.name == 'wasserstein_uot_transformer':
model.entity_embedding.data = torch.clamp(model.entity_embedding.data, 0, 1)
assert torch.isnan(model.entity_embedding.data).sum() == 0
return log
def eval_step(model, eval_iterator, device, mode, allowed_easy_ans=False):
model.eval()
logs = collections.defaultdict(lambda: collections.defaultdict(float))
with torch.no_grad():
for data in tqdm(eval_iterator):
for key in data:
pred = data[key]['emb']
all_logit = model.compute_all_entity_logit(pred, union=('u' in key or 'U' in key)) # batch*nentity
argsort = torch.argsort(all_logit, dim=1, descending=True)
ranking = argsort.clone().to(torch.float)
# create a new torch Tensor for batch_entity_range
if device != torch.device('cpu'):
ranking = ranking.scatter_(
1, argsort, torch.arange(model.n_entity).to(torch.float).repeat(argsort.shape[0], 1).to(
device))
else:
ranking = ranking.scatter_(
1, argsort, torch.arange(model.n_entity).to(torch.float).repeat(argsort.shape[0], 1))
# achieve the ranking of all entities
for i in range(all_logit.shape[0]):
if mode == 'train':
easy_ans = []
hard_ans = data[key]['answer_set'][i]
else:
if allowed_easy_ans:
easy_ans = []
hard_ans = list(set(data[key]['hard_answer_set'][i]).union
(set(data[key]['easy_answer_set'][i])))
else:
easy_ans = data[key]['easy_answer_set'][i]
hard_ans = data[key]['hard_answer_set'][i]
num_hard = len(hard_ans)
num_easy = len(easy_ans)
assert len(set(hard_ans).intersection(set(easy_ans))) == 0
# only take those answers' rank
cur_ranking = ranking[i, list(easy_ans) + list(hard_ans)]
cur_ranking, indices = torch.sort(cur_ranking)
masks = indices >= num_easy
if device != torch.device('cpu'):
answer_list = torch.arange(
num_hard + num_easy).to(torch.float).to(device)
else:
answer_list = torch.arange(
num_hard + num_easy).to(torch.float)
cur_ranking = cur_ranking - answer_list + 1
# filtered setting: +1 for start at 0, -answer_list for ignore other answers
cur_ranking = cur_ranking[masks]
# only take indices that belong to the hard answers
mrr = torch.mean(1. / cur_ranking).item()
h1 = torch.mean((cur_ranking <= 1).to(torch.float)).item()
h3 = torch.mean((cur_ranking <= 3).to(torch.float)).item()
h10 = torch.mean(
(cur_ranking <= 10).to(torch.float)).item()
add_hard_list = torch.arange(num_hard).to(torch.float).to(device)
hard_ranking = cur_ranking + add_hard_list # for all hard answer, consider other hard answer
logs[key]['retrieval_accuracy'] += torch.mean(
(hard_ranking <= num_hard).to(torch.float)).item()
logs[key]['MRR'] += mrr
logs[key]['HITS1'] += h1
logs[key]['HITS3'] += h3
logs[key]['HITS10'] += h10
num_query = all_logit.shape[0]
logs[key]['num_queries'] += num_query
for key in logs.keys():
for metric in logs[key].keys():
if metric != 'num_queries':
logs[key][metric] /= logs[key]['num_queries']
# torch.cuda.empty_cache()
return logs
# def training(model, opt, train_iterator, valid_iterator, test_iterator, writer, **train_cfg):
# lr = train_cfg['learning_rate']
# with tqdm.trange(train_cfg['steps']) as t:
# for step in t:
# log = train_step(model, opt, train_iterator, writer)
# t.set_postfix({'loss': log['loss']})
# if step % train_cfg['evaluate_every_steps'] and step > 0:
# eval_step(model, valid_iterator, 'valid', writer, **train_cfg)
# eval_step(model, test_iterator, 'test', writer, **train_cfg)
# if step >= train_cfg['warm_up_steps']:
# lr /= 5
# # logging
# opt = torch.optim.Adam(
# filter(lambda p: p.requires_grad, model.parameters()),
# lr=lr
# )
# train_cfg['warm_up_steps'] *= 1.5
# if step % train_cfg['save_every_steps']:
# pass
# if step % train_cfg['log_every_steps']:
# pass
def save_eval(log, mode, step, writer):
for t in log:
logt = log[t]
logt['step'] = step
writer.append_trace(f'eval_{mode}_{t}', logt)
def save_benchmark(log, writer, step, taskmanger: BenchmarkFormManager):
form_log = collections.defaultdict(lambda: collections.defaultdict(float))
for normal_form in all_normal_form:
formula = taskmanger.form2formula[normal_form]
if formula in log:
form_log[normal_form] = log[formula]
writer.save_dataframe(form_log, f"eval_{taskmanger.mode}_{step}_{taskmanger.query_inform_dict['formula_id']}.csv")
def save_whole_benchmark(log, writer, step, whole_task_manager: BenchmarkWholeManager):
for type_str in whole_task_manager.query_classes:
save_benchmark(log, writer, step, whole_task_manager.query_classes[type_str])
def load_beta_model(checkpoint_path, model, optimizer):
print('Loading checkpoint %s...' % checkpoint_path)
checkpoint = torch.load(os.path.join(
args.checkpoint_path, 'checkpoint'))
init_step = checkpoint['step']
model.load_state_dict(checkpoint['model_state_dict'])
current_learning_rate = checkpoint['current_learning_rate']
warm_up_steps = checkpoint['warm_up_steps']
optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
return current_learning_rate, warm_up_steps, init_step
def load_model(step, checkpoint_path, model, opt):
print('Loading checkpoint %s...' % checkpoint_path)
checkpoint = torch.load(os.path.join(
checkpoint_path, f'{step}.ckpt'), map_location=torch.device('cpu'))
model.load_state_dict(checkpoint['model_parameter'])
opt.load_state_dict(checkpoint['optimizer_parameter'])
learning_rate = train_config['learning_rate']
warm_up_steps = checkpoint['warm_up_steps'] # here has fixed.
return learning_rate, warm_up_steps
if __name__ == "__main__":
args = parser.parse_args()
# parse args and load config
# configure = read_from_yaml('config/default.yaml')
configure = read_from_yaml(args.config)
print("[main] config loaded")
pprint(configure)
# initialize my log writer
if configure['data']['type'] == 'beta':
case_name = f'{args.prefix}/{args.config.split("/")[-1].split(".")[0]}'
# case_name = 'dev/default'
writer = Writer(case_name=case_name, config=configure, log_path='log')
# writer = SummaryWriter('./logs-debug/unused-tb')
else:
if 'train' in configure['action']:
case_name = f'{args.prefix}/{args.config.split("/")[-1].split(".")[0]}'
else:
case_name = f'{args.prefix}/{args.checkpoint_path.split("/")[-1]}'
writer = Writer(case_name=case_name, config=configure, log_path='EFO-1_log')
# initialize environments
set_global_seed(configure.get('seed', 0))
if configure.get('cuda', -1) >=0 and torch.cuda.is_available():
device = torch.device('cuda:{}'.format(configure['cuda']))
# logging.info('Device use cuda: %s' % configure['cuda'])
else:
device = torch.device('cpu')
# prepare the procedure configs
train_config = configure['train']
train_config['device'] = device
eval_config = configure['evaluate']
eval_config['device'] = device
# load the data
print("[main] loading the data")
data_folder = configure['data']['data_folder']
entity_dict, relation_dict, projection_train, reverse_projection_train, projection_valid, reverse_projection_valid,\
projection_test, reverse_projection_test = load_data_with_indexing(data_folder)
n_entity, n_relation = len(entity_dict), len(relation_dict)
# get model
model_name = configure['estimator']['embedding']
model_params = configure['estimator'][model_name]
model_params['n_entity'], model_params['n_relation'] = n_entity, n_relation
model_params['negative_sample_size'] = train_config['negative_sample_size']
model_params['device'] = device
if model_name == 'beta':
model = BetaEstimator4V(**model_params)
allowed_norm = ['DeMorgan', 'DNF+MultiIU']
elif model_name == 'box':
model = BoxEstimator(**model_params)
allowed_norm = ['DNF+MultiIU']
elif model_name == 'logic':
model = LogicEstimator(**model_params)
allowed_norm = ['DeMorgan', 'DNF+MultiIU']
elif model_name == 'NewLook':
model = NLKEstimator(**model_params)
model.setup_relation_tensor(projection_train)
allowed_norm = ['DNF+MultiIUD']
elif model_name == 'Wasserstein_comp':
model = WassersteinEstimator4(**model_params)
allowed_norm = ['DeMorgan','DNF+MultiIU']
elif model_name == 'Wasserstein':
model = WassersteinEstimator(**model_params)
allowed_norm = ['DeMorgan','DNF+MultiIU']
elif model_name == "fuzzle":
model = FuzzleEstiamtor(**model_params)
allowed_norm = ['DeMorgan','DNF+MultiIU']
else:
assert False, 'Not valid model name!'
model.to(device)
valid_tm_list, test_tm_list = [], []
train_path_iterator, train_path_tm, train_other_iterator, train_other_tm = None, None, None, None
train_iterator, train_tm, valid_iterator, valid_tm, test_iterator, test_tm = None, None, None, None, None, None
if configure['data']['type'] == 'beta':
if 'train' in configure['action']:
print("[main] load training data")
beta_path_tasks, beta_other_tasks = [], []
for task in train_config['meta_queries']:
if task in ['1p', '2p', '3p']:
beta_path_tasks.append(task)
else:
beta_other_tasks.append(task)
path_tasks = load_task_manager(
configure['data']['data_folder'], 'train', task_names=beta_path_tasks)
other_tasks = load_task_manager(
configure['data']['data_folder'], 'train', task_names=beta_other_tasks)
if len(beta_path_tasks) > 0:
train_path_tm = TaskManager('train', path_tasks, device)
train_path_iterator = train_path_tm.build_iterators(model, batch_size=train_config['batch_size'])
if len(beta_other_tasks) > 0:
train_other_tm = TaskManager('train', other_tasks, device)
train_other_iterator = train_other_tm.build_iterators(model, batch_size=train_config['batch_size'])
all_tasks = load_task_manager(
configure['data']['data_folder'], 'train', task_names=train_config['meta_queries'])
train_tm = TaskManager('train', all_tasks, device)
train_iterator = train_tm.build_iterators(model, batch_size=configure['evaluate']['batch_size'])
if 'valid' in configure['action']:
print("[main] load valid data")
tasks = load_task_manager(configure['data']['data_folder'], 'valid',
task_names=configure['evaluate']['meta_queries'])
valid_tm = TaskManager('valid', tasks, device)
valid_iterator = valid_tm.build_iterators(model, batch_size=configure['evaluate']['batch_size'])
if 'test' in configure['action']:
print("[main] load test data")
tasks = load_task_manager(configure['data']['data_folder'], 'test',
task_names=configure['evaluate']['meta_queries'])
test_tm = TaskManager('test', tasks, device)
test_iterator = test_tm.build_iterators(model, batch_size=configure['evaluate']['batch_size'])
elif configure['data']['type'] == 'EFO-1':
if 'train' in configure['action']:
train_formula_id_file = configure['train']['formula_id_file']
train_formula_id_data = pd.read_csv(train_formula_id_file)
path_formulas_index_list, other_formulas_index_list = [], []
other_ops = ['i', 'I', 'u', 'U', 'n', 'd', 'D']
# other_ops = ['u', 'U']
for index in train_formula_id_data.index:
original_formula = train_formula_id_data['original'][index]
if True not in [ops in original_formula for ops in other_ops]:
path_formulas_index_list.append(index)
else:
other_formulas_index_list.append(index)
path_formula_id_data = train_formula_id_data.loc[path_formulas_index_list]
other_formula_id_data = train_formula_id_data.loc[other_formulas_index_list]
train_path_tm = BenchmarkWholeManager('train', path_formula_id_data, data_folder,
configure['train']['interested_normal_forms'], device, model)
train_path_iterator = train_path_tm.build_iterators(model, configure['train']['batch_size'])
train_other_tm = BenchmarkWholeManager('train', other_formula_id_data, data_folder,
configure['train']['interested_normal_forms'], device, model)
train_other_iterator = train_other_tm.build_iterators(model, configure['train']['batch_size'])
if 'valid' in configure['action']:
valid_formula_id_file = configure['evaluate']['formula_id_file']
valid_formula_id_data = pd.read_csv(valid_formula_id_file)
for i in valid_formula_id_data.index:
type_str = valid_formula_id_data['formula_id'][i]
filename = os.path.join(data_folder, f'valid-{type_str}.csv')
valid_tm = BenchmarkFormManager('valid', valid_formula_id_data.loc[i], filename, device, model)
valid_iterator = valid_tm.build_iterators(model, batch_size=configure['evaluate']['batch_size'])
valid_tm_list.append(valid_tm)
if 'test' in configure['action']:
test_formula_id_file = configure['evaluate']['formula_id_file']
test_formula_id_data = pd.read_csv(test_formula_id_file)
for i in test_formula_id_data.index:
type_str = test_formula_id_data['formula_id'][i]
old_filename = os.path.join(data_folder, f'data-{type_str}.csv')
if os.path.exists(old_filename):
test_tm = BenchmarkFormManager('test', test_formula_id_data.loc[i], old_filename, device, model)
else:
filename = os.path.join(data_folder, f'test-{type_str}.csv')
test_tm = BenchmarkFormManager('test', test_formula_id_data.loc[i], filename, device, model)
test_iterator = test_tm.build_iterators(model, batch_size=configure['evaluate']['batch_size'])
test_tm_list.append(test_tm)
else:
assert False, 'Not valid data type!'
lr = train_config['learning_rate']
weight_decay = train_config["weight_decay"]
# opt = adai_optim.Adai(filter(lambda p: p.requires_grad, model.parameters()), lr=lr, betas=(0.1, 0.99), eps=1e-03, weight_decay=5e-4)
opt = torch.optim.AdamW(
filter(lambda p: p.requires_grad, model.parameters()),
lr=lr, weight_decay=weight_decay
)
init_step = 1
# exit()
assert 2 * train_config['warm_up_steps'] == train_config['steps']
if args.checkpoint_path is not None:
if args.load_step != 0:
lr, train_config['warm_up_steps'] = load_model(args.load_step, args.checkpoint_path, model, opt)
init_step = args.load_step
else:
lr, train_config['warm_up_steps'], init_step = load_beta_model(args.checkpoint_path, model, opt)
training_logs = []
if configure['data']['type'] == 'EFO-1' and 'train' not in configure['action']:
assert train_config['steps'] == init_step
with trange(init_step, train_config['steps'] + 1) as t:
for step in t:
# basic training step
if train_path_iterator:
if step >= train_config['warm_up_steps']:
lr /= 5
# logging
opt = torch.optim.AdamW(
filter(lambda p: p.requires_grad, model.parameters()),
lr=lr,
weight_decay=weight_decay
)
train_config['warm_up_steps'] *= 1.5
try:
_log = train_step(model, opt, train_path_iterator)
except StopIteration:
print("new epoch for path meta-query")
train_path_iterator = train_path_tm.build_iterators(model, batch_size=train_config['batch_size'])
_log = train_step(model, opt, train_path_iterator)
if train_other_iterator:
try:
_log_other = train_step(model, opt, train_other_iterator)
try:
_log_second = train_step(model, opt, train_path_iterator)
except StopIteration:
print("new epoch for path meta-query")
train_path_iterator = train_path_tm.build_iterators(model,
batch_size=train_config['batch_size'])
_log_second = train_step(model, opt, train_path_iterator)
except StopIteration:
print("new epoch for other meta-query")
train_other_iterator = \
train_other_tm.build_iterators(model, batch_size=train_config['batch_size'])
_log_other = train_step(model, opt, train_other_iterator)
try:
_log_second = train_step(model, opt, train_path_iterator)
except StopIteration:
print("new epoch for path meta-query")
train_path_iterator = train_path_tm.build_iterators(model,
batch_size=train_config['batch_size'])
_log_second = train_step(model, opt, train_path_iterator)
_alllog = {}
for key in _log:
_alllog[f'all_{key}'] = (_log[key] + _log_other[key]) / 2
_alllog[key] = _log[key]
_log = _alllog
t.set_postfix(_log)
training_logs.append(_log)
if step % train_config['log_every_steps'] == 0:
for metric in training_logs[0].keys():
_log[metric] = sum(log[metric] for log in training_logs) / len(training_logs)
_log['step'] = step
training_logs = []
writer.append_trace('train', _log)
if step % train_config['evaluate_every_steps'] == 0 or step == train_config['steps']:
if configure['data']['type'] == 'beta':
'''
if train_iterator:
train_iterator = train_tm.build_iterators(model, batch_size=configure['evaluate']['batch_size'])
_log = eval_step(model, train_iterator, device, mode='train')
save_eval(_log, 'train', step, writer)
'''
if valid_iterator:
valid_iterator = valid_tm.build_iterators(model, batch_size=configure['evaluate']['batch_size'])
_log = eval_step(model, valid_iterator, device, mode='valid')
save_eval(_log, 'valid', step, writer)
if test_iterator:
test_iterator = test_tm.build_iterators(model, batch_size=configure['evaluate']['batch_size'])
_log = eval_step(model, test_iterator, device, mode='test')
save_eval(_log, 'test', step, writer)
elif configure['data']['type'] == 'EFO-1':
# todo: test_in_train, namely test the train dataset
id_list = [i for i in range(14)]
log_file = os.path.join("EFO-1_log/", writer.idstr)
for valid_tm in valid_tm_list:
valid_iterator = valid_tm.build_iterators(model, configure['evaluate']['batch_size'])
_log = eval_step(model, valid_iterator, device, 'valid')
save_benchmark(_log, writer, step, valid_tm)
log_benchmark(log_file, id_list, mode="valid", step=step)
# todo:add a function to collect mrr
for test_tm in test_tm_list:
test_iterator = test_tm.build_iterators(model, batch_size=configure['evaluate']['batch_size'])
_log = eval_step(model, test_iterator, device, mode='test')
'''
test_iterator =
test_tm.build_iterators(model, batch_size=configure['evaluate']['batch_size'])
_log_easy = eval_step(model, test_iterator, device, mode='test', allowed_easy_ans=True)
for formula in _log_easy:
for metrics in _log_easy[formula]:
_log[formula][f'easy_{metrics}'] = _log_easy[formula][metrics]
'''
save_benchmark(_log, writer, step, test_tm)
log_benchmark(log_file, id_list, mode="test", step=step)
if step % train_config['save_every_steps'] == 0 and train_path_iterator:
writer.save_model(model, opt, step, train_config['warm_up_steps'], lr)