-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_main.py
477 lines (431 loc) · 23.8 KB
/
test_main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
import argparse
import collections
import os
from pprint import pprint
import pandas as pd
import torch
import torch.nn.functional as F
from tqdm.std import trange, tqdm
import adai_optim
from data_helper import TaskManager, BenchmarkFormManager, all_normal_form, BenchmarkWholeManager
from fol import BetaEstimator, BoxEstimator, LogicEstimator, NLKEstimator, BetaEstimator4V, order_bounds
from fol.estimator_fuzzle import FuzzleEstiamtor
from fol.estimator_wass import WassersteinEstimator1, WassersteinEstimator2, WassersteinEstimator5, WassersteinEstimator4
from utils.util import (Writer, load_data_with_indexing, load_task_manager, read_from_yaml,
set_global_seed)
#ToDo:
# 1,log_benchmark out style
# 2,early stop on valid when select the metric
# collect valid DNF MRR scores for every evaluate step
def typestr2benchmarkname(type_str: str, mode=None, step=None):
if mode:
return f'eval_{mode}_{step}_{type_str}.csv'
else:
return f'eval_{type_str}.csv'
def log_benchmark(folder_path, id_list, percentage=False, mode=None, step=None):
queries = ["1p", "2p", "3p", "2i", "3i", "ip", "pi", "2in", "3in", "inp", "pin", "pni", "2u", "up"]
task_dist = {}
for i in range(len(queries)):
task_dist[i] = queries[i]
all_log = collections.defaultdict(lambda: collections.defaultdict(lambda: collections.defaultdict(float)))
for task_id in id_list:
type_str = f'type{task_id:04d}'
filename = typestr2benchmarkname(type_str, mode, step)
# real_index = all_formula.loc[all_formula['formula_id'] == f'type{id_str}'].index[0]
if os.path.exists(os.path.join(folder_path, filename)):
single_log = pd.read_csv(os.path.join(folder_path, filename))
index2metrics = single_log['Unnamed: 0']
for normal_form in single_log.columns:
if normal_form != 'Unnamed: 0':
for index in range(len(single_log[normal_form])):
if percentage and index2metrics[index] != 'num_queries':
all_log[index2metrics[index]][normal_form][task_id] = single_log[normal_form][index] * 100
else:
all_log[index2metrics[index]][normal_form][task_id] = single_log[normal_form][index]
for metric in all_log:
data_metric = pd.DataFrame.from_dict(all_log[metric])
if mode:
if metric == "MRR":
data_metric.insert(loc=0, column="task_name",value=pd.Series(["1p", "2p", "3p", "2i", "3i", "ip", "pi", "2in", "3in", "inp", "pin", "pni", "2u", "up"]))
epfo_list = [i for i in range(len(queries)) if "n" not in queries[i]]
n_list = [i for i in range(len(queries)) if "n" in queries[i]]
data_metric.loc["epfo_avg"] = data_metric.iloc[epfo_list].mean()
data_metric.loc["n_avg"] = data_metric.iloc[n_list].mean()
data_metric.to_csv(os.path.join(folder_path, f'all_formula_{mode}_{step}_{metric}.csv'))
else:
data_metric.to_csv(os.path.join(folder_path, f'all_formula_{metric}.csv'))
return all_log
def compute_final_loss_fuzzle(positive_logit, negative_logit, subsampling_weight):
score = -F.logsigmoid(
positive_logit.unsqueeze_(-1) - negative_logit
)
unwighted_loss = torch.mean(score, dim=-1)
loss = (unwighted_loss * subsampling_weight).sum() / subsampling_weight.sum()
return loss
def train_step(model, opt, iterator):
model.train()
opt.zero_grad()
data = next(iterator)
emb_list, answer_list = [], []
for formula in data:
emb_list.append(data[formula]['emb'])
answer_list.extend(data[formula]['answer_set'])
pred_embedding = torch.cat(emb_list, dim=0)
all_positive_logit, all_negative_logit, all_subsampling_weight = model.criterion(pred_embedding, answer_list)
loss= compute_final_loss_fuzzle(all_positive_logit, all_negative_logit, all_subsampling_weight)
loss.backward()
opt.step()
log = {'loss': loss.item()}
return log
def eval_step(model, eval_iterator, device, mode, allowed_easy_ans=False):
model.eval()
logs = collections.defaultdict(lambda: collections.defaultdict(float))
with torch.no_grad():
for data in tqdm(eval_iterator):
for key in data:
pred = data[key]['emb']
all_logit = model.compute_all_entity_logit(pred, union=('u' in key or 'U' in key)) # batch*nentity
argsort = torch.argsort(all_logit, dim=1, descending=True)
ranking = argsort.clone().to(torch.float)
# create a new torch Tensor for batch_entity_range
if device != torch.device('cpu'):
ranking = ranking.scatter_(
1, argsort, torch.arange(model.n_entity).to(torch.float).repeat(argsort.shape[0], 1).to(
device))
else:
ranking = ranking.scatter_(
1, argsort, torch.arange(model.n_entity).to(torch.float).repeat(argsort.shape[0], 1))
# achieve the ranking of all entities
for i in range(all_logit.shape[0]):
if mode == 'train':
easy_ans = []
hard_ans = data[key]['answer_set'][i]
else:
if allowed_easy_ans:
easy_ans = []
hard_ans = list(set(data[key]['hard_answer_set'][i]).union
(set(data[key]['easy_answer_set'][i])))
else:
easy_ans = data[key]['easy_answer_set'][i]
hard_ans = data[key]['hard_answer_set'][i]
num_hard = len(hard_ans)
num_easy = len(easy_ans)
assert len(set(hard_ans).intersection(set(easy_ans))) == 0
# only take those answers' rank
cur_ranking = ranking[i, list(easy_ans) + list(hard_ans)]
cur_ranking, indices = torch.sort(cur_ranking)
masks = indices >= num_easy
if device != torch.device('cpu'):
answer_list = torch.arange(
num_hard + num_easy).to(torch.float).to(device)
else:
answer_list = torch.arange(
num_hard + num_easy).to(torch.float)
cur_ranking = cur_ranking - answer_list + 1
# filtered setting: +1 for start at 0, -answer_list for ignore other answers
cur_ranking = cur_ranking[masks]
# only take indices that belong to the hard answers
mrr = torch.mean(1. / cur_ranking).item()
h1 = torch.mean((cur_ranking <= 1).to(torch.float)).item()
h3 = torch.mean((cur_ranking <= 3).to(torch.float)).item()
h10 = torch.mean(
(cur_ranking <= 10).to(torch.float)).item()
add_hard_list = torch.arange(num_hard).to(torch.float).to(device)
hard_ranking = cur_ranking + add_hard_list # for all hard answer, consider other hard answer
logs[key]['retrieval_accuracy'] += torch.mean(
(hard_ranking <= num_hard).to(torch.float)).item()
logs[key]['MRR'] += mrr
logs[key]['HITS1'] += h1
logs[key]['HITS3'] += h3
logs[key]['HITS10'] += h10
num_query = all_logit.shape[0]
logs[key]['num_queries'] += num_query
for key in logs.keys():
for metric in logs[key].keys():
if metric != 'num_queries':
logs[key][metric] /= logs[key]['num_queries']
# torch.cuda.empty_cache()
return logs
def save_eval(log, mode, step, writer):
for t in log:
logt = log[t]
logt['step'] = step
writer.append_trace(f'eval_{mode}_{t}', logt)
def save_benchmark(log, writer, step, taskmanger: BenchmarkFormManager):
form_log = collections.defaultdict(lambda: collections.defaultdict(float))
for normal_form in all_normal_form:
formula = taskmanger.form2formula[normal_form]
if formula in log:
form_log[normal_form] = log[formula]
writer.save_dataframe(form_log, f"eval_{taskmanger.mode}_{step}_{taskmanger.query_inform_dict['formula_id']}.csv")
def save_whole_benchmark(log, writer, step, whole_task_manager: BenchmarkWholeManager):
for type_str in whole_task_manager.query_classes:
save_benchmark(log, writer, step, whole_task_manager.query_classes[type_str])
def load_beta_model(checkpoint_path, model, optimizer):
print('Loading checkpoint %s...' % checkpoint_path)
checkpoint = torch.load(os.path.join(
args.checkpoint_path, 'checkpoint'))
init_step = checkpoint['step']
model.load_state_dict(checkpoint['model_state_dict'])
current_learning_rate = checkpoint['current_learning_rate']
warm_up_steps = checkpoint['warm_up_steps']
optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
return current_learning_rate, warm_up_steps, init_step
def load_model(step, checkpoint_path, model, opt):
print('Loading checkpoint %s...' % checkpoint_path)
checkpoint = torch.load(os.path.join(
checkpoint_path, f'{step}.ckpt'), map_location=torch.device('cpu'))
model.load_state_dict(checkpoint['model_parameter'])
opt.load_state_dict(checkpoint['optimizer_parameter'])
learning_rate = train_config['learning_rate']
warm_up_steps = checkpoint['warm_up_steps']
return learning_rate, warm_up_steps
parser = argparse.ArgumentParser()
parser.add_argument('--config', default='config/EFO-1_FuzzQE.yaml', type=str)
parser.add_argument('--prefix', default='EFO-1_train', type=str)
parser.add_argument('--checkpoint_path', default="/home/wzfei/code/WassersteinEmbedding/EFO-1_log/EFO-1_train/EFO-1_FuzzQE220813.08:09:336176f103", type=str)
parser.add_argument('--load_step', default=90000, type=int)
parser.add_argument('--optimizer', default='AdamW', type=str, choices=['Adam', 'AdamW', "Adai"])
if __name__ == "__main__":
args = parser.parse_args()
# parse args and load config
# configure = read_from_yaml('config/default.yaml')
configure = read_from_yaml(args.config)
print("[main] config loaded")
pprint(configure)
# initialize my log writer
if configure['data']['type'] == 'beta':
case_name = f'{args.prefix}/{args.config.split("/")[-1].split(".")[0]}'
# case_name = 'dev/default'
writer = Writer(case_name=case_name, config=configure, log_path='log')
# writer = SummaryWriter('./logs-debug/unused-tb')
else:
if 'train' in configure['action']:
case_name = f'{args.prefix}/{args.config.split("/")[-1].split(".")[0]}'
else:
case_name = f'{args.prefix}/{args.checkpoint_path.split("/")[-1]}'
writer = Writer(case_name=case_name, config=configure, log_path='EFO-1_log')
# initialize environments
set_global_seed(configure.get('seed', 0))
if configure.get('cuda', -1) >= 0 and torch.cuda.is_available():
device = torch.device('cuda:{}'.format(configure['cuda']))
# logging.info('Device use cuda: %s' % configure['cuda'])
else:
device = torch.device('cpu')
# prepare the procedure configs
train_config = configure['train']
train_config['device'] = device
eval_config = configure['evaluate']
eval_config['device'] = device
# load the data
print("[main] loading the data")
data_folder = configure['data']['data_folder']
entity_dict, relation_dict, projection_train, reverse_projection_train, projection_valid, reverse_projection_valid,\
projection_test, reverse_projection_test = load_data_with_indexing(data_folder)
n_entity, n_relation = len(entity_dict), len(relation_dict)
# get model
model_name = configure['estimator']['embedding']
model_params = configure['estimator'][model_name]
model_params['n_entity'], model_params['n_relation'] = n_entity, n_relation
model_params['negative_sample_size'] = train_config['negative_sample_size']
model_params['device'] = device
if model_name == 'beta':
model = BetaEstimator4V(**model_params)
allowed_norm = ['DeMorgan', 'DNF+MultiIU']
elif model_name == 'box':
model = BoxEstimator(**model_params)
allowed_norm = ['DNF+MultiIU']
elif model_name == 'logic':
model = LogicEstimator(**model_params)
allowed_norm = ['DeMorgan', 'DNF+MultiIU']
elif model_name == 'NewLook':
model = NLKEstimator(**model_params)
model.setup_relation_tensor(projection_train)
allowed_norm = ['DNF+MultiIUD']
elif model_name == 'Wasserstein_tran':
model = WassersteinEstimator5(**model_params)
allowed_norm = ['DeMorgan','DNF+MultiIU']
elif model_name == 'Wasserstein_comp':
model = WassersteinEstimator4(**model_params)
allowed_norm = ['DeMorgan','DNF+MultiIU']
elif model_name == "fuzzle":
model = FuzzleEstiamtor(**model_params)
allowed_norm = ['DeMorgan','DNF+MultiIU']
else:
assert False, 'Not valid model name!'
model.to(device)
valid_tm_list, test_tm_list = [], []
train_path_iterator, train_path_tm, train_other_iterator, train_other_tm = None, None, None, None
train_iterator, train_tm, valid_iterator, valid_tm, test_iterator, test_tm = None, None, None, None, None, None
if configure['data']['type'] == 'beta':
if 'train' in configure['action']:
print("[main] load training data")
beta_path_tasks, beta_other_tasks = [], []
for task in train_config['meta_queries']:
if task in ['1p', '2p', '3p']:
beta_path_tasks.append(task)
else:
beta_other_tasks.append(task)
path_tasks = load_task_manager(
configure['data']['data_folder'], 'train', task_names=beta_path_tasks)
other_tasks = load_task_manager(
configure['data']['data_folder'], 'train', task_names=beta_other_tasks)
if len(beta_path_tasks) > 0:
train_path_tm = TaskManager('train', path_tasks, device)
train_path_iterator = train_path_tm.build_iterators(model, batch_size=train_config['batch_size'])
if len(beta_other_tasks) > 0:
train_other_tm = TaskManager('train', other_tasks, device)
train_other_iterator = train_other_tm.build_iterators(model, batch_size=train_config['batch_size'])
all_tasks = load_task_manager(
configure['data']['data_folder'], 'train', task_names=train_config['meta_queries'])
train_tm = TaskManager('train', all_tasks, device)
train_iterator = train_tm.build_iterators(model, batch_size=configure['evaluate']['batch_size'])
if 'valid' in configure['action']:
print("[main] load valid data")
tasks = load_task_manager(configure['data']['data_folder'], 'valid',
task_names=configure['evaluate']['meta_queries'])
valid_tm = TaskManager('valid', tasks, device)
valid_iterator = valid_tm.build_iterators(model, batch_size=configure['evaluate']['batch_size'])
if 'test' in configure['action']:
print("[main] load test data")
tasks = load_task_manager(configure['data']['data_folder'], 'test',
task_names=configure['evaluate']['meta_queries'])
test_tm = TaskManager('test', tasks, device)
test_iterator = test_tm.build_iterators(model, batch_size=configure['evaluate']['batch_size'])
elif configure['data']['type'] == 'EFO-1':
if 'train' in configure['action']:
train_formula_id_file = configure['train']['formula_id_file']
train_formula_id_data = pd.read_csv(train_formula_id_file)
path_formulas_index_list, other_formulas_index_list = [], []
other_ops = ['i', 'I', 'u', 'U', 'n', 'd', 'D']
for index in train_formula_id_data.index:
original_formula = train_formula_id_data['original'][index]
if True not in [ops in original_formula for ops in other_ops]:
path_formulas_index_list.append(index)
else:
other_formulas_index_list.append(index)
path_formula_id_data = train_formula_id_data.loc[path_formulas_index_list]
other_formula_id_data = train_formula_id_data.loc[other_formulas_index_list]
train_path_tm = BenchmarkWholeManager('train', path_formula_id_data, data_folder,
configure['train']['interested_normal_forms'], device, model)
train_path_iterator = train_path_tm.build_iterators(model, configure['train']['batch_size'])
train_other_tm = BenchmarkWholeManager('train', other_formula_id_data, data_folder,
configure['train']['interested_normal_forms'], device, model)
train_other_iterator = train_other_tm.build_iterators(model, configure['train']['batch_size'])
if 'valid' in configure['action']:
valid_formula_id_file = configure['evaluate']['formula_id_file']
valid_formula_id_data = pd.read_csv(valid_formula_id_file)
for i in valid_formula_id_data.index:
type_str = valid_formula_id_data['formula_id'][i]
filename = os.path.join(data_folder, f'valid-{type_str}.csv')
valid_tm = BenchmarkFormManager('valid', valid_formula_id_data.loc[i], filename, device, model)
valid_iterator = valid_tm.build_iterators(model, batch_size=configure['evaluate']['batch_size'])
valid_tm_list.append(valid_tm)
if 'test' in configure['action']:
test_formula_id_file = configure['evaluate']['formula_id_file']
test_formula_id_data = pd.read_csv(test_formula_id_file)
for i in test_formula_id_data.index:
type_str = test_formula_id_data['formula_id'][i]
old_filename = os.path.join(data_folder, f'data-{type_str}.csv')
if os.path.exists(old_filename):
test_tm = BenchmarkFormManager('test', test_formula_id_data.loc[i], old_filename, device, model)
else:
filename = os.path.join(data_folder, f'test-{type_str}.csv')
test_tm = BenchmarkFormManager('test', test_formula_id_data.loc[i], filename, device, model)
test_iterator = test_tm.build_iterators(model, batch_size=configure['evaluate']['batch_size'])
test_tm_list.append(test_tm)
else:
assert False, 'Not valid data type!'
# set lr and optimier
lr = train_config['learning_rate']
if args.optimizer == "AdamW":
weight_decay = 5e-4
opt = torch.optim.AdamW(
filter(lambda p: p.requires_grad, list(model.parameters())),
lr=lr,
eps=1e-6,
weight_decay=weight_decay
)
elif args.optimizer=="Adai":
opt = adai_optim.Adai(
model.parameters(),
lr=lr,
betas=(0.1, 0.99),
eps=1e-03,
weight_decay=5e-4)
else:
opt = torch.optim.Adam(
filter(lambda p: p.requires_grad, model.parameters()), lr=lr)
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(opt, T_max=train_config['steps'], eta_min=0, last_epoch=-1)
init_step = 1
# exit()
assert 2 * train_config['warm_up_steps'] == train_config['steps']
if args.checkpoint_path is not None:
if args.load_step != 0:
lr, train_config['warm_up_steps'] = load_model(args.load_step, args.checkpoint_path, model, opt)
init_step = args.load_step
else:
lr, train_config['warm_up_steps'], init_step = load_beta_model(args.checkpoint_path, model, opt)
training_logs = []
if configure['data']['type'] == 'EFO-1' and 'train' not in configure['action']:
assert train_config['steps'] == init_step
with trange(init_step, train_config['steps'] + 1) as t:
for step in t:
# basic training step
if train_path_iterator:
try:
_log = train_step(model, opt, train_path_iterator)
except StopIteration:
print("new epoch for path meta-query")
train_path_iterator = train_path_tm.build_iterators(model, batch_size=train_config['batch_size'])
_log = train_step(model, opt, train_path_iterator)
if train_other_iterator:
try:
_log_other = train_step(model, opt, train_other_iterator)
except StopIteration:
print("new epoch for other meta-query")
train_other_iterator = \
train_other_tm.build_iterators(model, batch_size=train_config['batch_size'])
_log_other = train_step(model, opt, train_other_iterator)
_alllog = {}
for key in _log:
_alllog[f'all_{key}'] = (_log[key] + _log_other[key]) / 2
_alllog[key] = _log[key]
_log = _alllog
#update lr
scheduler.step()
# record the loss
t.set_postfix(_log)
training_logs.append(_log)
if step % train_config['log_every_steps'] == 0:
for metric in training_logs[0].keys():
_log[metric] = sum(log[metric] for log in training_logs) / len(training_logs)
_log['step'] = step
training_logs = []
writer.append_trace('train', _log)
if step % train_config['evaluate_every_steps'] == 0 or step == train_config['steps']:
if configure['data']['type'] == 'beta':
if valid_iterator:
valid_iterator = valid_tm.build_iterators(model, batch_size=configure['evaluate']['batch_size'])
_log = eval_step(model, valid_iterator, device, mode='valid')
save_eval(_log, 'valid', step, writer)
if test_iterator:
test_iterator = test_tm.build_iterators(model, batch_size=configure['evaluate']['batch_size'])
_log = eval_step(model, test_iterator, device, mode='test')
save_eval(_log, 'test', step, writer)
elif configure['data']['type'] == 'EFO-1':
# todo: test_in_train, namely test the train dataset
id_list = [i for i in range(14)]
log_file = os.path.join("EFO-1_log/", writer.idstr)
for valid_tm in valid_tm_list:
valid_iterator = valid_tm.build_iterators(model, configure['evaluate']['batch_size'])
_log = eval_step(model, valid_iterator, device, 'valid')
save_benchmark(_log, writer, step, valid_tm)
log_benchmark(log_file, id_list, mode="valid", step=step)
for test_tm in test_tm_list:
test_iterator = test_tm.build_iterators(model, batch_size=configure['evaluate']['batch_size'])
_log = eval_step(model, test_iterator, device, mode='test')
save_benchmark(_log, writer, step, test_tm)
log_benchmark(log_file, id_list, mode="test", step=step)
if step % train_config['save_every_steps'] == 0 and train_path_iterator:
writer.save_model(model, opt, step, train_config['warm_up_steps'], lr)