-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathdata_org.py
64 lines (52 loc) · 1.88 KB
/
data_org.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
import numpy as np
class MNISTDataHandler(object):
"""
Members :
is_train - Options for sampling
path - MNIST data path
data - a list of np.array w/ shape [batch_size, 28, 28, 1]
"""
def __init__(self, path, is_train):
self.is_train = is_train
self.path = path
self.data = self._get_data()
def _get_data(self):
from tensorflow.examples.tutorials.mnist import input_data
from tensorflow.contrib.learn.python.learn.datasets.base \
import maybe_download
from tensorflow.contrib.learn.python.learn.datasets.mnist \
import extract_images, extract_labels
if self.is_train:
IMAGES = 'train-images-idx3-ubyte.gz'
LABELS = 'train-labels-idx1-ubyte.gz'
else :
IMAGES = 't10k-images-idx3-ubyte.gz'
LABELS = 't10k-labels-idx1-ubyte.gz'
SOURCE_URL = 'http://yann.lecun.com/exdb/mnist/'
# local_file = maybe_download(IMAGES, self.path, SOURCE_URL)
with open("MNIST_data/"+IMAGES, 'rb') as f:
images = extract_images(f)
# local_file = maybe_download(LABELS, self.path, SOURCE_URL)
with open("MNIST_data/"+LABELS, 'rb') as f:
labels = extract_labels(f, one_hot=False)
values, counts = np.unique(labels, return_counts=True)
data = []
for i in range(10):
label = values[i]
count = counts[i]
arr = np.empty([count, 28, 28, 1], dtype=np.float32)
data.append(arr)
l_iter = [0]*10
for i in range(labels.shape[0]):
label = labels[i]
data[label][l_iter[label]] = images[i] / 255.
l_iter[label] += 1
return data
def sample_pair(self, batch_size, label=None):
label = np.random.randint(10) if label is None else label
images = self.data[label]
choice1 = np.random.choice(images.shape[0], batch_size)
choice2 = np.random.choice(images.shape[0], batch_size)
x = images[choice1]
y = images[choice2]
return x, y