-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcnnmodel_adapted.py
56 lines (43 loc) · 2.51 KB
/
cnnmodel_adapted.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
from keras.models import Sequential
from keras.layers import Dropout, Convolution2D, MaxPooling2D, Flatten, Dense, Activation
class CNNModel:
@staticmethod
def load_inputshape(img_rows, img_cols):
return img_rows, img_cols, 1
@staticmethod
def reshape_input_data(x_train, x_test, img_rows, img_cols):
x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, 1)
x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, 1)
return x_train, x_test
@staticmethod
def load_model(classes=10, img_rows=28, img_cols=28):
input_shape = CNNModel.load_inputshape(img_rows, img_cols)
model = Sequential()
# 1 Input: 225x225 Output: 71x71
model.add(Convolution2D(input_shape=input_shape, data_format='channels_last', strides=(1, 1), filters=64,
kernel_size=(2, 2), padding="same", activation="relu"))
# Inout 71x71 Output: 35x35
model.add(MaxPooling2D(pool_size=(3, 3), strides=(2, 2), padding="same"))
# 2 Input: 35x35 Output: 31x31
model.add(Convolution2D(kernel_size=(3, 3), filters=128, strides=(1, 1), activation="relu", padding="same"))
# Input: 31x31 Output: 15x15s
model.add(MaxPooling2D(pool_size=(3, 3), strides=(2, 2), padding="same"))
# Input: 15x15 Output: 15x15
model.add(Convolution2D(kernel_size=(3, 3), filters=256, strides=(1, 1), activation="relu", padding="valid"))
model.add(Convolution2D(kernel_size=(3, 3), filters=256, strides=(1, 1), activation="relu", padding="valid"))
model.add(Convolution2D(kernel_size=(3, 3), filters=256, strides=(1, 1), activation="relu", padding="valid"))
# Input: 15x15 Output: 7x7
model.add(MaxPooling2D(pool_size=(3, 3), strides=(2, 2), padding="same"))
# Input: 7x7 Output: 1x1
model.add(Convolution2D(kernel_size=(7, 7), filters=512, strides=(1, 1), activation="relu", padding="same"))
# Input: 1x1 Output: 1x1
model.add(Dropout(rate=0.5))
model.add(Convolution2D(kernel_size=(1, 1), filters=512, strides=(1, 1), activation="relu", padding="same"))
model.add(Dropout(rate=0.5))
model.add(Convolution2D(kernel_size=(1, 1), filters=512, strides=(1, 1), activation="relu", padding="same"))
model.add(Flatten())
model.add(Dense(units=classes, activation="softmax"))
model.compile(optimizer='Adam',
loss='categorical_crossentropy',
metrics=['accuracy'])
return model