-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvideo_test.py
345 lines (290 loc) · 12.1 KB
/
video_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
from queue import Queue
print('initializing...')
import cv2
# from threading import Thread
"""from threading import Lock
from multiprocessing import Process"""
import os
# import sys
import csv
import time
import numpy as np
# from math import pi
from ultralytics import YOLO
import torch
from ruamel.yaml import YAML
# import tools
# import alarm
import my_serial as messager
from stereo_camera import binocular_camera as bc
from stereo_camera.coex_matcher import CoExMatcher
# from apriltag_locater.apriltag_detector import ApriltagDetector
# import apriltag_locater.apriltag_detector as ad
# from apriltag_locater.hik_camera import camera as mc
from target import Targets
from anchor import Anchor
from anchor import set_by_hand
from macro import *
import coordinate_conversion as cc
import gui
print('[main] modules imported')
# import global_var as gv
# 敌方颜色:1红、2蓝
ENEMY_COLOR = RED
portx = 'COM3'
main_cfg_path = "./videotest_config.yaml"
binocular_camera_cfg_path = "./video/bin_cam_config.yaml"
monocular_camera_cfg_path = "./apriltag_locater/hik_camera/config.yaml"
video_test_cfg = YAML().load(open(main_cfg_path, encoding='Utf-8', mode='r'))
bin_cam_cfg = YAML().load(open(binocular_camera_cfg_path, encoding='Utf-8', mode='r'))
# _cam_cfg = YAML().load(open(binocular_camera_cfg_path, encoding='Utf-8', mode='r'))
device = torch.device('cuda:0')
if video_test_cfg['debug']:
portx = 'COM7'
CarsTotal = 5
RedCarsID = {1: 1, 2: 2, 3: 3, 4: 4, 5: 5}
BlueCarsID = {1: 101, 2: 102, 3: 103, 4: 104, 5: 105}
classes = ["car", "armor1red", "armor2red", "armor3red", "armor4red", "armor5red",
"armor1blue", "armor2blue", "armor3blue", "armor4blue", "armor5blue", "base", "ignore"]
cos_arc_roll = np.cos(bin_cam_cfg['set']['roll'] * np.pi / 180)
cam_bias = bin_cam_cfg['set']['bias']
if ENEMY_COLOR == RED: # self = BLUE
Enemy_Car_List = [1, 2, 3, 4, 5]
Own_Car_List = [101, 102, 103, 104, 105]
Encirclement_List = [101, 103, 104, 105, 107]
Guard = 107
Radar = 109
label, seed, buf = 1, 11200, 14150
"""bin_cam_pos = cc.CameraPose(28988.19 + bin_cam_cfg['set']['bias_x'],
6017.49 - bin_cam_cfg['set']['bias_y'],
2497 + bin_cam_cfg['set']['bias_y'],
0, 0, 0)"""
radar_base = [28988.19, 6017.49, 2500] # blue base
cam_pos = [radar_base[0] + cam_bias[0], radar_base[1] - cam_bias[1], radar_base[2] + cam_bias[2]]
sign = -1
ALLY_COLOR = BLUE
elif ENEMY_COLOR == BLUE: # self = RED
Enemy_Car_List = [101, 102, 103, 104, 105]
Own_Car_List = [1, 2, 3, 4, 5]
Encirclement_List = [1, 3, 4, 5, 7]
Guard = 7
Radar = 9
label, seed, buf = 101, 17942, 1799
"""bin_cam_pos = cc.CameraPose(-987.55 - bin_cam_cfg['set']['bias_x'],
9018.02 + bin_cam_cfg['set']['bias_y'],
2497 + bin_cam_cfg['set']['bias_y'],
0, 0, 0)"""
radar_base = [-987.55, 9018.02, 2500] # red base
cam_pos = [radar_base[0] - cam_bias[0], radar_base[1] + cam_bias[1], radar_base[2] + cam_bias[2]]
sign = 1
ALLY_COLOR = RED
if video_test_cfg['training']:
radar_base = [-60, 7000, 2500]
# 核心变量:EnemyCars数组
# 临时变量:用于储存预测结果为Car的object,使用完立即clear
targets = Targets(ENEMY_COLOR)
Enemy_Cars = []
count_down = 420
blood = [0 for i in range(16)]
guard_location = (0, 0)
# 全局线程标志位
exit_signal = False
map_sending = False
Alarming = True
time_flag = False
blood_flag = True
blood_init = False
# if cfg['ctrl']['SENDING'] | cfg['ctrl']['RECEIVING']:
ser = messager.serial_init(portx)
# 数据保存
if video_test_cfg['ctrl']['SAVE_IMG']:
time_now = time.localtime()
img_folder = './record' + str(time_now[1]) + '-' + str(time_now[2]) + '-' + str(time_now[3]) + '-' + str(
time_now[4]) # months + days + hours
primal_folder = img_folder + '/primal'
result_folder = img_folder + '/result'
if not os.path.exists(img_folder):
os.mkdir(img_folder)
os.mkdir(primal_folder)
os.mkdir(result_folder)
if video_test_cfg['ctrl']['RECORDING']:
time_now = time.localtime()
video_folder = './video_record' + str(time_now[1]) + '-' + str(time_now[2]) + '-' + str(time_now[3]) + '-' + str(
time_now[4]) + '-' + str(time_now[5]) + '-' + str(time_now[6]) # months-days-hours-mins-secs
raw_video_folder = video_folder + '/raw'
left_video_folder = raw_video_folder + '/left'
right_video_folder = raw_video_folder + '/right'
# result_video_folder = video_folder + '/result'
if not os.path.exists(video_folder):
os.mkdir(video_folder)
if not os.path.exists(raw_video_folder):
os.mkdir(raw_video_folder)
if not os.path.exists(left_video_folder):
os.mkdir(left_video_folder)
if not os.path.exists(right_video_folder):
os.mkdir(right_video_folder)
# os.mkdir(result_video_folder)
fourcc = cv2.VideoWriter_fourcc('m', 'p', '4', 'v') # ('M', 'P', '4', 'V')
frame_size = (bin_cam_cfg['param']['Width'], bin_cam_cfg['param']['Height'])
left_video = cv2.VideoWriter(left_video_folder + "/raw_left.mp4", fourcc, 12, frame_size, True)
right_video = cv2.VideoWriter(right_video_folder + "/raw_right.mp4", fourcc, 12, frame_size, True)
depth_video = cv2.VideoWriter(video_folder + "/dep_view_left.mp4", fourcc, 12, frame_size, True)
disp_video = cv2.VideoWriter(video_folder + "/disp_left.mp4", fourcc, 12, frame_size, True)
if video_test_cfg['ctrl']['SAVE_CSV']:
header = ['car_center_x', 'car_center_y', 'x', 'y', 'z']
chart = open("data.csv", "w", newline='')
writer = csv.DictWriter(chart, header)
writer.writeheader()
print('preparing gui')
print('done')
# with qt
def push_button_clicked_quit():
global exit_signal, Loop
exit_signal = True
print('exit')
Loop = False
Loop = True
# 主函数
def main():
global targets
camera_left = camera_right = None
ret_p = ret_q = None
coex_matcher = None
model_car = None # = model_armor
ir = suffix = None
dst_img = None
# send_queue = Queue()
if video_test_cfg['ctrl']['MODE'] == 'video':
camera_left, fpsl, sizel = bc.get_video_loader(video_test_cfg['video_left'])
camera_right, fpsr, sizer = bc.get_video_loader(video_test_cfg['video_right'])
elif video_test_cfg['ctrl']['MODE'] == 'camera':
print("\nLoading camera")
camera_left, camera_right, ret_p, ret_q = bc.get_camera(bin_cam_cfg)
print("Done")
print("\nLoading matching model")
coex_matcher = CoExMatcher(bin_cam_cfg)
print("Done\n")
left_cam_cfg = dict()
left_cam_cfg['intrinsic'] = bin_cam_cfg['calib']['intrinsic1']
left_cam_cfg['distortion'] = bin_cam_cfg['calib']['distortion1']
camera_pose_solver = cc.CameraPoseSolver(ALLY_COLOR, left_cam_cfg)
if video_test_cfg['ctrl']['ANCHOR']:
anchor = Anchor()
while True: # this while is for case where no img got
ret, image_left = camera_left.read()
ret, image_right = camera_right.read()
if image_left is None:
continue
set_by_hand(image_left, anchor)
camera_pose_solver.init_by_anchor(anchor)
break
if video_test_cfg['ctrl']['DETECT']:
# 加载模型
print('Loading Car Model')
model_car = YOLO(video_test_cfg['weights']['yolov8'])
# './weights/with_sod_yolov8l_epoch140_16_640_adam_half_0705_.pt'
# as warmup
# dummy = cv2.imread('./dummy.png')
# model_car.predict(dummy)
# stride = model_car.model.stride.numpy()
# stride = 1 # 32
# shape_shifter = tools.pre_cfg(cfg['hyper']['imgsz'], cfg['hyper']['image_h'], cfg['hyper']['image_w'], stride)
print('Done\n')
cnt = 0
start = time.time()
# now = time.time()
last = time.time()
# Here the main loop
global Loop
while Loop:
if cv2.waitKey(1) == ord('q'):
Loop = False
ret, image_left = camera_left.read()
ret, image_right = camera_right.read()
if not ret:
print("Done!")
break
if image_right is None or image_left is None:
continue
if video_test_cfg['ctrl']['RECORDING']:
left_video.write(image_left)
right_video.write(image_right)
re_left, point_cloud, disp_np = coex_matcher.inference(image_left, image_right)
if video_test_cfg['ctrl']['RECORDING']:
disp_video.write(disp_np)
disp_np = cv2.applyColorMap(2 * disp_np, cv2.COLORMAP_MAGMA)
cv2.imshow('disp', disp_np)
if video_test_cfg['ctrl']['RECORDING']:
cnt += 1
fps = cnt / (time.time() - start)
cv2.putText(
disp_np,
"%.1f fps" % fps,
(10, 30),
cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 2, cv2.LINE_AA)
depth_video.write(disp_np)
if video_test_cfg['ctrl']['DETECT']:
dst_img = np.copy(re_left)
result = model_car.predict(dst_img, show=True)
boxes = result[0].boxes.data.cpu()
boxes = boxes.numpy()
print(boxes)
targets.update(boxes)
# DONE: add transform TODO: test transform
for target in targets.targets:
if target.conf > 0:
cam_coord = [[point_cloud[int(target.center_yx[0])][int(target.center_yx[1])][0]],
[point_cloud[int(target.center_yx[0])][int(target.center_yx[1])][1]],
[point_cloud[int(target.center_yx[0])][int(target.center_yx[1])][2]]]
field_coord = camera_pose_solver.get_field_coord(cam_coord)
target.x = field_coord[0][0]
target.y = field_coord[1][0]
if video_test_cfg['debug'] or video_test_cfg['training']:
msg = str(cam_coord)
cv2.putText(re_left,
msg,
(int(target.center_yx[1]), int(target.center_yx[0])),
cv2.FONT_HERSHEY_PLAIN,
1.0,
(0, 0, 255),
thickness=1)
if video_test_cfg['debug'] or video_test_cfg['training']:
cv2.imshow('dist', re_left)
# TODO: think about
# cnt_send = 0
for car in targets.targets:
if car.conf > 0:
now = time.time()
# 距离上一次发送时间小于0.1s:sleep
if now - last < 0.1:
time.sleep(0.1 - (now - last))
print(car.get_id())
print(car.x / 1000)
print(car.y / 1000)
messager.send_enemy_location(ser, car.get_id(), car.x / 1000,
car.y / 1000) # mm to m
last = time.time()
"""if cnt_send < 2:
if now - last < 0.1:
time.sleep(0.1 - (now - last))"""
# messager.send_random(ser, label, seed / 1000, buf / 1000)
# cv2.waitKey(100)
# messager.send_random(ser, label, seed, buf)
# last = time.time()
'- end of loop -----------------------------------------------------------------------------'
if video_test_cfg['ctrl']['MODE'] == 'camera':
# 关闭相机并销毁句柄
bc.camera_close(camera_left)
bc.camera_close(camera_right)
# 等待相机线程执行完毕(释放摄像头)
cv2.destroyAllWindows()
# 停止录像,释放视频头
if video_test_cfg['ctrl']['RECORDING']:
os.system('copy ./cam_config.yaml ' + video_folder + '/related_cam_config.yaml')
left_video.release()
right_video.release()
depth_video.release()
disp_video.release()
print('release!')
if __name__ == '__main__':
main()