-
Notifications
You must be signed in to change notification settings - Fork 82
/
train.py
executable file
·420 lines (346 loc) · 17.2 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
# coding=utf-8
from __future__ import absolute_import, division, print_function
import logging
import argparse
import os
import random
import numpy as np
from datetime import timedelta
import time
import torch
import torch.distributed as dist
from tqdm import tqdm
from torch.utils.tensorboard import SummaryWriter
from models.modeling import VisionTransformer, CONFIGS
from vit_utils import scheduler
from vit_utils.scheduler import WarmupLinearSchedule, WarmupCosineSchedule
from vit_utils.data_utils import get_loader
from vit_utils.dist_util import get_world_size
import habana_frameworks.torch.core as htcore
import habana_frameworks.torch.utils.debug as htdebug
logger = logging.getLogger(__name__)
def init_distributed_mode(args):
world_size = 0
from habana_frameworks.torch.distributed.hccl import initialize_distributed_hpu
world_size, rank, args.local_rank = initialize_distributed_hpu()
print('| distributed init (rank {})'.format(args.local_rank), flush=True)
process_per_node = 8 #make this configurable for multi-hls using args
if world_size > 1:
# extend the default HCL timeout
os.environ["MAX_WAIT_ATTEMPTS"] = "50"
dist.init_process_group('hccl', rank=rank, world_size=world_size)
else:
print("single card run ")
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def simple_accuracy(preds, labels):
return (preds == labels).mean()
def save_model(args, model, optimizer, scheduler):
model_to_save = model.module if hasattr(model, 'module') else model
model_checkpoint = os.path.join(
args.output_dir, "%s_checkpoint.pth" % args.name)
logger.info("Saved model checkpoint to [DIR: %s]", args.output_dir)
if (str(args.device) == 'hpu'):
for state in optimizer.state.values():
for k, v in state.items():
if isinstance(v, torch.Tensor):
state[k] = v.to('cpu')
config = CONFIGS[args.model_type]
copy_model = VisionTransformer(
config, args.img_size, zero_head=True, num_classes=1000)
copy_model.load_state_dict(model_to_save.state_dict())
save_state = {'model': copy_model.state_dict(),
'optimizer': optimizer.state_dict(),
'scheduler': scheduler.state_dict(),
'config': config}
torch.save(save_state, model_checkpoint)
for state in optimizer.state.values():
for k, v in state.items():
if isinstance(v, torch.Tensor):
state[k] = v.to('hpu')
else:
torch.save(model_to_save.state_dict(), model_checkpoint)
def setup(args):
# Prepare model
config = CONFIGS[args.model_type]
if args.dataset == "cifar10":
num_classes = 10
elif args.dataset == "imagenet1K":
num_classes = 1000
else:
num_classes = 100
model = VisionTransformer(config, args.img_size, zero_head=True, num_classes=num_classes)
if os.path.exists(args.pretrained_dir) or args.support_inaccurate_perf_test == False :
model.load_from(np.load(args.pretrained_dir))
else:
logger.info("bypassed loading pre-trained weights - results will not be correct - internal perf test only")
if args.resume:
checkpoint = torch.load(args.resume, map_location='cpu')
model.load_state_dict(checkpoint['model'], strict=False)
model.to(args.device)
num_params = count_parameters(model)
logger.info("{}".format(config))
logger.info("Training parameters %s", args)
logger.info("Total Parameter: \t%2.1fM" % num_params)
print(num_params)
return args, model
def count_parameters(model):
params = sum(p.numel() for p in model.parameters() if p.requires_grad)
return params/1000000
def set_seed(args):
if args.seed is not None:
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
def valid(args, model, writer, test_loader, global_step):
# Validation!
eval_losses = AverageMeter()
logger.info("***** Running Validation *****")
logger.info(" Num steps = %d", len(test_loader))
logger.info(" Batch size = %d", args.eval_batch_size)
model.eval()
all_preds, all_label = [], []
epoch_iterator = tqdm(test_loader,
desc="Validating... (loss=X.X)",
bar_format="{l_bar}{r_bar}",
dynamic_ncols=True,
disable=args.local_rank not in [-1, 0])
loss_fct = torch.nn.CrossEntropyLoss()
with torch.autocast(device_type="hpu", dtype=torch.bfloat16, enabled=args.is_autocast):
for step, batch in enumerate(epoch_iterator):
batch = tuple(t.to(args.device) for t in batch)
x, y = batch
with torch.no_grad():
logits = model(x)[0]
eval_loss = loss_fct(logits, y)
eval_losses.update(eval_loss.item())
preds = torch.argmax(logits, dim=-1)
if len(all_preds) == 0:
all_preds.append(preds.detach().cpu().numpy())
all_label.append(y.detach().cpu().numpy())
else:
all_preds[0] = np.append(
all_preds[0], preds.detach().cpu().numpy(), axis=0
)
all_label[0] = np.append(
all_label[0], y.detach().cpu().numpy(), axis=0
)
epoch_iterator.set_description("Validating... (loss=%2.5f)" % eval_losses.val)
all_preds, all_label = all_preds[0], all_label[0]
accuracy = simple_accuracy(all_preds, all_label)
logger.info("\n")
logger.info("Validation Results")
logger.info("Global Steps: %d" % global_step)
logger.info("Valid Loss: %2.5f" % eval_losses.avg)
logger.info("Valid Accuracy: %2.5f" % accuracy)
writer.add_scalar("test/accuracy", scalar_value=accuracy, global_step=global_step)
return accuracy
def train(args, model):
""" Train the model """
if args.local_rank in [-1, 0]:
os.makedirs(args.output_dir, exist_ok=True)
writer = SummaryWriter(log_dir=os.path.join("logs", args.name))
args.train_batch_size = args.train_batch_size // args.gradient_accumulation_steps
# Prepare dataset
logger.info("======== args ========= \n")
logger.info(args)
logger.info("======== ========= \n")
train_loader, test_loader = get_loader(args)
# Prepare optimizer and scheduler
if (str(args.device) == 'hpu' and args.run_lazy_mode):
# use fused SGD for better performance
from habana_frameworks.torch.hpex.optimizers import FusedSGD
optimizer = FusedSGD(model.parameters(),
lr=args.learning_rate,
momentum=0.9,
weight_decay=args.weight_decay)
else:
optimizer = torch.optim.SGD(model.parameters(),
lr=args.learning_rate,
momentum=0.9,
weight_decay=args.weight_decay)
t_total = args.num_steps
if args.decay_type == "cosine":
scheduler = WarmupCosineSchedule(optimizer, warmup_steps=args.warmup_steps, t_total=t_total)
else:
scheduler = WarmupLinearSchedule(optimizer, warmup_steps=args.warmup_steps, t_total=t_total)
if args.resume:
checkpoint = torch.load(args.resume, map_location='cpu')
optimizer.load_state_dict(checkpoint['optimizer'])
scheduler.load_state_dict(checkpoint['scheduler'])
# Distributed training
if args.local_rank != -1:
model = torch.nn.parallel.DistributedDataParallel(model, broadcast_buffers=False, gradient_as_bucket_view=False)
total_batch_size = args.train_batch_size * args.gradient_accumulation_steps* (
torch.distributed.get_world_size() if args.local_rank != -1 else 1)
# Train!
logger.info("***** Running training *****")
logger.info(args.device)
logger.info(" Total optimization steps = %d", args.num_steps)
logger.info(" Instantaneous batch size (per CPU/HPU) = %d", args.train_batch_size)
logger.info(" Total train batch size (w. parallel, distributed & accumulation) = %d", total_batch_size)
logger.info(" Gradient Accumulation steps = %d", args.gradient_accumulation_steps)
model.zero_grad()
set_seed(args) # Added here for reproducibility (even between python 2 and 3)
losses = AverageMeter()
global_step, best_acc = 0, 0
end = time.time()
while True:
model.train()
epoch_iterator = tqdm(train_loader,
desc="Training (X / X Steps) (loss=X.X)",
bar_format="{l_bar}{r_bar}",
dynamic_ncols=True,
disable=args.local_rank not in [-1, 0])
for step, batch in enumerate(epoch_iterator):
with torch.autocast(device_type="hpu", dtype=torch.bfloat16, enabled=args.is_autocast):
batch = tuple(t.to(args.device) for t in batch)
x, y = batch
loss = model(x, y)
if args.gradient_accumulation_steps > 1:
loss = loss / args.gradient_accumulation_steps
# WA -MarkStep added for SFG support- will be removed later on
if (str(args.device) == 'hpu') and args.run_lazy_mode:
htcore.mark_step()
loss.backward()
if (str(args.device) == 'hpu') and args.run_lazy_mode:
htcore.mark_step()
if (step + 1) % args.gradient_accumulation_steps == 0:
losses.update(loss.item()*args.gradient_accumulation_steps)
torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)
if (str(args.device) == 'hpu'):
optimizer.step()
if args.run_lazy_mode:
htcore.mark_step()
else:
optimizer.step()
optimizer.zero_grad()
scheduler.step() # moved after optimizer step call (see https://pytorch.org/docs/stable/optim.html)
global_step += 1
epoch_iterator.set_description(
"Training (%d / %d Steps) (loss=%2.5f images/sec=%2.5f)" % (global_step, t_total, losses.val, total_batch_size / (time.time()-end))
)
if args.local_rank in [-1, 0]:
writer.add_scalar("train/loss", scalar_value=losses.val, global_step=global_step)
writer.add_scalar("train/lr", scalar_value=scheduler.get_last_lr()[0], global_step=global_step)
if global_step % args.eval_every == 0 and args.local_rank in [-1, 0]:
accuracy = valid(args, model, writer, test_loader, global_step)
if best_acc < accuracy:
save_model(args, model, optimizer, scheduler)
best_acc = accuracy
model.train()
if global_step % t_total == 0:
break
end = time.time()
if str(args.device) == 'hpu' and args.local_rank != -1:
dist.barrier()
losses.reset()
if global_step % t_total == 0:
break
if args.local_rank in [-1, 0]:
writer.close()
logger.info("Best Accuracy: \t%f" % best_acc)
logger.info("End Training!")
def main():
parser = argparse.ArgumentParser()
# Required parameters
parser.add_argument("--name", required=True,
help="Name of this run. Used for monitoring.")
parser.add_argument("--dataset", choices=["cifar10", "cifar100", "imagenet1K"], default="cifar10",
help="Which downstream task.")
parser.add_argument("--model_type", choices=["ViT-B_16", "ViT-B_32", "ViT-L_16",
"ViT-L_32", "ViT-H_14", "R50-ViT-B_16"],
default="ViT-B_16",
help="Which variant to use.")
parser.add_argument("--pretrained_dir", type=str, default="checkpoint/ViT-B_16.npz",
help="Where to search for pretrained ViT models.")
parser.add_argument("--output_dir", default="output", type=str,
help="The output directory where checkpoints will be written.")
parser.add_argument("--img_size", default=384, type=int,
help="Resolution size")
parser.add_argument("--train_batch_size", default=512, type=int,
help="Total batch size for training.")
parser.add_argument("--eval_batch_size", default=64, type=int,
help="Total batch size for eval.")
parser.add_argument("--eval_every", default=100, type=int,
help="Run prediction on validation set every so many steps."
"Will always run one evaluation at the end of training.")
parser.add_argument("--learning_rate", default=6e-2, type=float,
help="The initial learning rate for SGD.")
parser.add_argument("--weight_decay", default=0, type=float,
help="Weight deay if we apply some.")
parser.add_argument("--num_steps", default=10000, type=int,
help="Total number of training epochs to perform.")
parser.add_argument("--decay_type", choices=["cosine", "linear"], default="cosine",
help="How to decay the learning rate.")
parser.add_argument("--warmup_steps", default=500, type=int,
help="Step of training to perform learning rate warmup for.")
parser.add_argument("--max_grad_norm", default=1.0, type=float,
help="Max gradient norm.")
parser.add_argument("--local_rank", type=int, default=-1,
help="local_rank for distributed training on gpus")
parser.add_argument('--seed', type=int, default=42,
help="random seed for initialization")
parser.add_argument('--gradient_accumulation_steps', type=int, default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.")
parser.add_argument('--internal-perf-measure',dest='support_inaccurate_perf_test', action='store_true',
help="allow inaccurate run (skip pretained weights load) for internal perf test")
parser.add_argument('--loss_scale', type=float, default=0,
help="Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n"
"0 (default value): dynamic loss scaling.\n"
"Positive power of 2: static loss scaling value.\n")
parser.add_argument("--data_path", default="dataset_path", type=str,
help="The data path to non CIFAR10, CIFAR100 dataset e.g. imagenet1K directory")
parser.add_argument(
"--cache-dataset",
dest="cache_dataset",
help="Cache the datasets for quicker initialization. It also serializes the transforms",
action="store_true",)
parser.add_argument('--use_hpu', type=int, default=1, help='use hpu for run')
parser.add_argument('--resume', default=None, help='resume from checkpoint')
parser.add_argument('--run_lazy_mode', default='True', type=lambda x: x.lower() == 'true',
help='run model in lazy execution mode(enabled by default).'
'Any value other than True(case insensitive) disables lazy mode')
parser.add_argument('--autocast', dest='is_autocast', action='store_true', help='enable autocast mode on Gaudi')
args = parser.parse_args()
if args.use_hpu == 0:
logger.info("************** setting device to be CPU !")
device = torch.device("cpu")
else:
logger.info("************** setting device to be HPU !")
device = torch.device("hpu")
args.n_gpu = 0
args.device = device
############# Setup & Function Add For HPU Mode
if (str(args.device) == 'hpu'):
if args.run_lazy_mode:
assert os.getenv('PT_HPU_LAZY_MODE') == '1' or os.getenv('PT_HPU_LAZY_MODE') == None, f"run_lazy_mode == True, but PT_HPU_LAZY_MODE={os.getenv('PT_HPU_LAZY_MODE')}. For run lazy mode, set PT_HPU_LAZY_MODE to 1"
if args.use_hpu:
init_distributed_mode(args)
# Setup logging
logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt='%m/%d/%Y %H:%M:%S',
level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN)
logger.warning("Process rank: %s, device: %s, n_gpu: %s, distributed training: %s" %
(args.local_rank, args.device, args.n_gpu, bool(args.local_rank != -1)))
# Set seed
set_seed(args)
# Model & Tokenizer Setup
args, model = setup(args)
model.to(device)
# Training
train(args, model)
if __name__ == "__main__":
main()