-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathMultideg.lean
921 lines (804 loc) · 29.3 KB
/
Multideg.lean
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
import Mathlib.Data.Finsupp.Basic
import Mathlib.Data.MvPolynomial.Basic
import Mathlib.Data.MvPolynomial.CommRing
import Mathlib.RingTheory.Polynomial.Basic
import Mathlib.Tactic.LibrarySearch
import Basic
import TermOrder
namespace MvPolynomial
open BigOperators
open Classical
open Finset
variable {σ : Type _}
variable [LinearOrder (TermOrder (σ →₀ ℕ))]
variable [CovariantClass (TermOrder (σ→₀ℕ)) (TermOrder (σ→₀ℕ)) (·+·) (·≤·)]
variable [ZeroLEClass (TermOrder (σ→₀ℕ))]
variable [CommSemiring R]
variable (p q: MvPolynomial σ R)
variable (p_ne_zero: p ≠ 0)
variable (q_ne_zero: q ≠ 0)
def multideg: TermOrder (σ →₀ ℕ) :=
p.support.sup (α:=TermOrder (σ→₀ℕ)) (β:=TermOrder (σ→₀ℕ)) id
-- #align mv_polynomial.multideg MvPolynomial.multideg
-- TODO: remove multideg'
def multideg' : TermOrder (σ →₀ ℕ) :=
p.support.max' (α:=TermOrder (σ→₀ℕ))
(Finset.nonempty_of_ne_empty (support_eq_empty.not.mpr p_ne_zero))
-- #align mv_polynomial.multideg' MvPolynomial.multideg'
def multideg'' : WithBot (TermOrder (σ→₀ℕ)) :=
p.support.max (α:=TermOrder (σ→₀ℕ))
noncomputable def leading_coeff : R :=
if p_ne_zero': p ≠ 0
then coeff (multideg' p p_ne_zero') p
else 0
#align mv_polynomial.leading_coeff MvPolynomial.leading_coeff
noncomputable def leading_term : MvPolynomial σ R :=
if p_ne_zero': p ≠ 0
then monomial (multideg' p p_ne_zero') (coeff (multideg' p p_ne_zero') p)
else 0
#align mv_polynomial.leading_term MvPolynomial.leading_term
noncomputable def lm : MvPolynomial σ R :=
if p_ne_zero': p ≠ 0
then monomial (multideg' p p_ne_zero') (1 : R)
else 0
#align mv_polynomial.lm MvPolynomial.lm
-- instance WithBot (TermOrder (σ→₀ℕ))
-- set_option trace.Meta.synthInstance true in
-- #check (inferInstance : WellFoundedRelation (WithBot (TermOrder (σ→₀ℕ))))
lemma multideg_apply :
multideg p = p.support.sup (α:=TermOrder (σ→₀ℕ)) (β:=TermOrder (σ→₀ℕ)) id
:= rfl
lemma multideg'_apply :
multideg' p p_ne_zero = p.support.max' (α:=TermOrder (σ→₀ℕ))
(Finset.nonempty_of_ne_empty (support_eq_empty.not.mpr p_ne_zero)) := rfl
lemma multideg''_apply :
p.multideg'' = p.support.max (α:=TermOrder (σ→₀ℕ)) := rfl
lemma multideg'_eq_multideg {p: MvPolynomial σ R} (p_ne_zero: p ≠ 0):
multideg' p p_ne_zero = multideg p := by
unfold multideg multideg' Finset.max'
-- library_search
exact Finset.sup'_eq_sup (multideg'.proof_1 p p_ne_zero) id
lemma multideg''_def :
p.multideg'' =
if p = 0 then (⊥: WithBot (TermOrder (σ →₀ ℕ))) else p.multideg :=
by
by_cases hp : p = 0
·
simp [multideg'', hp]
·
-- simp? [multideg'', hp, ←multideg'_eq_multideg hp, Finset.max, multideg']
simp only [multideg'', Finset.max, ← multideg'_eq_multideg hp,
multideg', ne_eq, hp, ite_false]
rw [Finset.max'_eq_sup', coe_sup']
rfl
lemma multideg'_eq_multideg'' {p : MvPolynomial σ R} (p_ne_zero: p ≠ 0):
p.multideg' p_ne_zero = p.multideg'' := by
simp [p_ne_zero, multideg''_def, multideg'_eq_multideg]
@[simp]
lemma multideg_zero: multideg (0 : MvPolynomial σ R) = 0 := rfl
@[simp]
lemma multideg''_zero : multideg'' (0 : MvPolynomial σ R) = ⊥ := by
unfold multideg''
rw [support_eq_empty.mpr (rfl), max_empty]
@[simp]
lemma multideg_C: multideg (C a: MvPolynomial σ R) = 0 := by
unfold multideg
rw [C_apply, support_monomial]
-- simp?
simp only
by_cases ha: a = 0
· -- simp? [ha]
simp only [ha, ite_true, sup_empty]
rfl
· -- simp? [ha]
simp only [ha, ite_false, sup_singleton, id_eq]
@[simp]
lemma multideg''_C :
multideg'' (C a : MvPolynomial σ R) = if a = 0 then ⊥ else 0 := by
rw [multideg'', C_apply, support_monomial]
by_cases ha : a = 0
·simp [ha]
· simp [ha]
rfl
lemma multideg_0: multideg (0: MvPolynomial σ R) = 0 := multideg_zero
lemma multideg''_0: multideg'' (0: MvPolynomial σ R) = ⊥ := multideg''_zero
@[simp]
lemma multideg_1: multideg (1: MvPolynomial σ R) = 0 := by
rw [←C_1]
exact multideg_C
@[simp]
lemma multideg''_1 [Nontrivial R] [Inhabited σ] : multideg'' (1 : MvPolynomial σ R) = 0 := by
rw [multideg''_def]
simp
rfl
@[simp]
lemma multideg'_1 [Nontrivial R] [Inhabited σ]:
multideg' (1 : MvPolynomial σ R) (one_ne_zero) = 0 := by
rw [multideg'_eq_multideg]
simp
@[simp]
lemma multideg'_1' (h1 : (1 : MvPolynomial σ R) ≠ 0):
multideg' (1 : MvPolynomial σ R) h1 = 0 := by
rw [multideg'_eq_multideg]
simp
@[simp]
lemma ne_zero_of_multideg_ne_zero
{p: MvPolynomial σ R} (h: multideg p ≠ 0):
p ≠ 0 := by
by_contra hp
simp only [hp, multideg_zero, ne_eq, not_true] at h
lemma coeff_eq_zero_of_multideg_lt {p: MvPolynomial σ R} (h: multideg p < s):
coeff s p = 0 := by
rw [←not_mem_support_iff]
by_contra hs
unfold multideg at h
exact not_le_of_lt h (Finset.le_sup (f:=@id (TermOrder (σ→₀ℕ))) hs)
lemma coeff_eq_zero_of_multideg'_lt
{p: MvPolynomial σ R} {p_ne_zero: p ≠ 0} (h: multideg' p p_ne_zero < s):
coeff s p = 0 :=
coeff_eq_zero_of_multideg_lt (multideg'_eq_multideg p_ne_zero ▸ h)
lemma le_multideg_of_coeff_ne_zero
{p: MvPolynomial σ R} {s: TermOrder (σ→₀ℕ)} (h: coeff s p ≠ 0):
s ≤ multideg p := by
revert h
rw [←not_imp_not, ←lt_iff_not_le]
-- simp?
simp only [ne_eq, not_not]
exact coeff_eq_zero_of_multideg_lt
lemma le_multideg'_of_coeff_ne_zero
{p: MvPolynomial σ R} {p_ne_zero: p ≠ 0} {s: TermOrder (σ→₀ℕ)}
(h: coeff s p ≠ 0):
s ≤ multideg' p p_ne_zero :=
multideg'_eq_multideg p_ne_zero ▸ le_multideg_of_coeff_ne_zero h
lemma multideg'_in_support: multideg' p p_ne_zero ∈ p.support :=
(show Finset (TermOrder (σ→₀ℕ)) from p.support).max'_mem _
#align mv_polynomial.multideg'_in_support MvPolynomial.multideg'_in_support
lemma leading_coeff_def_of_p_ne_zero {p: MvPolynomial σ R} (p_ne_zero: p≠0):
leading_coeff p = coeff (multideg' p p_ne_zero) p := by
unfold leading_coeff
-- simp? [p_ne_zero]
simp only [ne_eq, p_ne_zero, not_false_iff, multideg'_eq_multideg,
dite_eq_ite, ite_true]
lemma multideg_mem_support_iff_p_ne_zero :
p.multideg ∈ p.support ↔ p ≠ 0 := by
constructor
·
intro h
exact support_eq_empty.not.mp (Finset.ne_empty_of_mem h)
·
intro h
rw [←multideg'_eq_multideg h]
exact multideg'_in_support p h
lemma lm_def_of_ne_zero {p : MvPolynomial σ R} (h : p ≠ 0) :
p.lm = monomial p.multideg 1 := by simp [lm, h, multideg'_eq_multideg]
@[simp]
lemma leading_coeff_eq_zero_iff: leading_coeff p = 0 ↔ p = 0 := by
constructor
·
intro hlc
by_contra h
-- simp? [h, lc] at hlc
simp only [leading_coeff, ne_eq, h, not_false_iff, dite_true] at hlc
exact (mem_support_iff.mp (multideg'_in_support p h)) hlc
·
intro hp
rw [hp]
rfl
lemma leading_coeff_def: leading_coeff p = coeff (multideg p) p := by
by_cases hp: p = 0
·
rw [hp]
-- simp? [leading_coeff_eq_zero_iff]
simp only [multideg_zero, coeff_zero, leading_coeff_eq_zero_iff]
·
unfold leading_coeff
-- simp? [hp, multideg'_eq_multideg]
simp only [ne_eq, hp, not_false_iff, multideg'_eq_multideg,
dite_eq_ite, ite_true]
lemma multideg'_iff {p: MvPolynomial σ R} (p_ne_zero: p ≠ 0):
s = multideg' p p_ne_zero ↔ (p.coeff s ≠ 0 ∧ ∀ s' > s, p.coeff s' = 0)
:= by
constructor
·
intros hs
rw [hs, ←leading_coeff_def_of_p_ne_zero p_ne_zero]
constructor
·exact (leading_coeff_eq_zero_iff p).not.mpr p_ne_zero
·
intros s' hs'
exact coeff_eq_zero_of_multideg'_lt hs'
·
rintro ⟨hsp, hs'⟩
rw [eq_iff_le_not_lt]
constructor
·
exact le_multideg'_of_coeff_ne_zero hsp
·
by_contra hs
specialize hs' (p.multideg' p_ne_zero) hs
rw [←leading_coeff_def_of_p_ne_zero p_ne_zero] at hs'
exact p_ne_zero ((leading_coeff_eq_zero_iff p).mp hs')
@[simp]
lemma leading_term_eq_zero_iff: leading_term p = 0 ↔ p = 0 := by
constructor
·
intro hp
-- simp? [leading_term] at hp
simp only [leading_term, ne_eq, dite_not, dite_eq_left_iff,
monomial_eq_zero] at hp
by_contra hp'
exact mem_support_iff.mp (multideg'_in_support p hp') (hp hp')
·
intro hp
rw [hp]
rfl
@[simp]
lemma leading_term_0 : leading_term (0 : MvPolynomial σ R) = 0 := by
-- simp?
simp only [ne_eq, leading_term_eq_zero_iff]
lemma leading_term_def:
leading_term p = monomial (multideg p) p.leading_coeff := by
by_cases hp: p = 0
·
-- simp? [leading_term_eq_zero_iff, leading_coeff, hp]
simp only [multideg_zero, leading_coeff, ne_eq, not_true, coeff_zero, hp,
dite_eq_ite, ite_self, map_zero, leading_term_eq_zero_iff]
·
-- simp? [hp, multideg'_eq_multideg, leading_term, leading_coeff]
simp only [leading_term, ne_eq, hp, not_false_eq_true,
multideg'_eq_multideg, dite_eq_ite, ite_true, leading_coeff]
lemma leading_term_def' :
p.leading_term = p.leading_coeff • p.lm := by
rw [leading_term_def, lm]
by_cases h : p = 0
·simp [h]
·simp [h, multideg'_eq_multideg]
lemma leading_coeff_smul_lm_eq_leading_term:
leading_coeff p • lm p =leading_term p := by
unfold leading_coeff lm leading_term
by_cases hp: p = 0
·
-- simp? [hp]
simp only [hp, ne_eq, coeff_zero, dite_eq_ite, dite_false, smul_zero]
·
-- simp? [hp]
simp only [ne_eq, hp, not_false_iff, dite_true]
rw [smul_monomial, smul_eq_mul, mul_one]
lemma lm_eq_zero_iff: lm p = 0 ↔ p = 0 := by
unfold lm
constructor
·
intro hlm
-- simp? at hlm
simp only [ne_eq, dite_not, dite_eq_left_iff, monomial_eq_zero] at hlm
by_cases if_trivial: Nontrivial R
·
by_contra hp
exact one_ne_zero (hlm hp)
·
have all_mem_eq := nontrivial_iff.not.mp if_trivial
push_neg at all_mem_eq
specialize all_mem_eq 1 0
rw [←mul_one p, ←C_1, ←C_0, all_mem_eq]
simp only [map_zero, mul_zero]
·
intro hp
simp only [hp, ne_eq, not_true, dite_false]
variable {p q: MvPolynomial σ R} (p_ne_zero: p≠0) (q_ne_zero: q≠0)
lemma multideg_le_iff_multideg''_le {s : TermOrder (σ→₀ℕ)} :
p.multideg'' ≤ s ↔ p.multideg ≤ s := by
by_cases hp : p = 0
·simp [hp]
·simp [←multideg'_eq_multideg'' hp, multideg'_eq_multideg]
lemma le_multideg_of_le_multideg'' {s : TermOrder (σ→₀ℕ)}
(h : s ≤ p.multideg'') : s ≤ p.multideg := by
by_cases hp : p = 0
·simp [hp] at h
· simp [←multideg'_eq_multideg'' hp, multideg'_eq_multideg] at h
exact h
lemma multideg_le_multideg_of_multideg''_le_multideg''
(h : p.multideg'' ≤ q.multideg'') : p.multideg ≤ q.multideg := by
by_cases hp : p = 0
·simp [hp]
· by_cases hq : q = 0
·simp [hq, multideg''_def, hp] at h
· simp [←multideg'_eq_multideg'', hp, hq, multideg'_eq_multideg] at h
exact h
lemma le_multideg' {i: TermOrder (σ→₀ℕ)} (h: i ∈ p.support):
i ≤ p.multideg' p_ne_zero
:= Finset.le_max' (α:=TermOrder (σ→₀ℕ)) p.support i h
lemma le_multideg'' {i: TermOrder (σ→₀ℕ)} (h: i ∈ p.support):
i ≤ p.multideg'' := by
by_cases hp : p = 0
· simp [hp] at h
· simp [←multideg'_eq_multideg'' hp, le_multideg' hp h]
lemma le_multideg {i: TermOrder (σ→₀ℕ)} (h: i ∈ p.support): i ≤ p.multideg
:= by
by_cases hp: p = 0
·
rw [←support_eq_empty] at hp
-- simp? [hp] at h
simp only [hp, Finset.not_mem_empty] at h
·
exact multideg'_eq_multideg hp ▸ le_multideg' hp h
theorem multideg'_mul_le (pq_ne_zero: p * q ≠ 0):
multideg' (p * q) pq_ne_zero ≤
(multideg' p (ne_zero_and_ne_zero_of_mul pq_ne_zero).1) +
(multideg' q (ne_zero_and_ne_zero_of_mul pq_ne_zero).2) := by
have pqsup_nonempty :=
Finset.nonempty_of_ne_empty (support_eq_empty.not.mpr pq_ne_zero)
unfold multideg'
have mul_sup := support_mul p q
have h :=
mem_of_subset mul_sup (max'_mem (α:=TermOrder (σ→₀ℕ)) _ pqsup_nonempty)
rw [Finset.mem_biUnion] at h
rcases h with ⟨a, ha, h⟩
rw [Finset.mem_biUnion] at h
rcases h with ⟨b, hb, h⟩
rw [Finset.mem_singleton] at h
rw [h]
apply add_le_add
·exact Finset.le_max' (α:=TermOrder (σ→₀ℕ)) _ _ ha
·exact Finset.le_max' (α:=TermOrder (σ→₀ℕ)) _ _ hb
lemma multideg_mul_le: multideg (p * q) ≤ multideg p + multideg q := by
by_cases hpq: p * q = 0
·exact hpq.symm ▸ ZeroLEClass.zero_le (multideg p + multideg q)
·
rw [←multideg'_eq_multideg hpq,
←multideg'_eq_multideg (ne_zero_and_ne_zero_of_mul hpq).1,
←multideg'_eq_multideg (ne_zero_and_ne_zero_of_mul hpq).2]
exact multideg'_mul_le hpq
lemma coeff_multideg'_add_mul:
(p * q).coeff (multideg' p p_ne_zero + multideg' q q_ne_zero) =
leading_coeff p * leading_coeff q :=
by
rw [coeff_mul]
unfold leading_coeff
-- simp? [p_ne_zero, q_ne_zero]
simp only [ne_eq, p_ne_zero, not_false_iff, dite_true, q_ne_zero]
let deg'p: σ→₀ℕ := multideg' p p_ne_zero
let deg'q: σ→₀ℕ := multideg' q q_ne_zero
rw [Finset.sum_eq_add_sum_diff_singleton
(i:=(deg'p, deg'q))
(by rw [Finsupp.mem_antidiagonal])]
rw [(_:
((deg'p + deg'q).antidiagonal \ {(deg'p, deg'q)}).sum
(fun x => p.coeff x.1 * q.coeff x.2) = 0
)]
exact add_zero _
rw [←Finset.sum_coe_sort]
let s := (deg'p + deg'q).antidiagonal \ {(deg'p, deg'q)}
have: ∀(i: s),
p.coeff (i:(σ→₀ℕ)×(σ→₀ℕ)).1 * q.coeff (i:(σ→₀ℕ)×(σ→₀ℕ)).2 = 0
:= by
-- simp? [-not_and]
simp only [Subtype.forall, Finsupp.mem_antidiagonal, not_true,
Finset.mem_sdiff, Finset.mem_singleton, and_imp, Prod.forall,
Prod.mk.injEq]
rintro (a: TermOrder (σ→₀ℕ)) (b: TermOrder (σ→₀ℕ)) hab hab'
by_contra'
let ⟨ha, hb⟩ := ne_zero_and_ne_zero_of_mul this
rw [←mem_support_iff] at ha
rw [←mem_support_iff] at hb
have ha' := le_multideg' p_ne_zero ha
have hb' := le_multideg' q_ne_zero hb
by_cases ha: a = deg'p
·
rw [ha] at hab
have hb:= add_left_cancel hab
exact hab' ⟨ha, hb⟩
·
have key :=
calc
deg'p + deg'q
_ = a + b := hab.symm
_ < multideg' p _ + b := add_lt_add_right (lt_of_le_of_ne ha' ha) b
exact ((lt_iff_not_ge _ _).mp (lt_of_add_lt_add_left key)) hb'
-- simp? [this]
simp only [Finset.sum_const_zero, this]
lemma multideg'_mul [NoZeroDivisors R]:
multideg' (p*q) (mul_ne_zero_iff.mpr ⟨p_ne_zero, q_ne_zero⟩) =
p.multideg' p_ne_zero + q.multideg' q_ne_zero
:= by
have pq_ne_zero := mul_ne_zero_iff.mpr ⟨p_ne_zero, q_ne_zero⟩
rw [le_antisymm_iff]
constructor
·exact multideg'_mul_le pq_ne_zero
·
-- conv_rhs => rw [multideg']
apply Finset.le_max'
refine mem_support_iff.mpr ?_
rw [coeff_multideg'_add_mul p_ne_zero q_ne_zero]
-- simp? [leading_coeff_eq_zero_iff, p_ne_zero, q_ne_zero]
simp only [ne_eq, mul_eq_zero, leading_coeff_eq_zero_iff, p_ne_zero,
q_ne_zero, or_self, not_false_eq_true]
lemma multideg''_mul [NoZeroDivisors R] :
(p*q).multideg'' = p.multideg'' + q.multideg'' := by
by_cases hpq : p = 0 ∨ q = 0
·cases' hpq with h h <;> simp [h]
·
push_neg at hpq
simp_rw [←multideg'_eq_multideg'' hpq.1, ←multideg'_eq_multideg'' hpq.2,
←multideg'_eq_multideg'' (mul_ne_zero_iff.mpr hpq)]
rw [←WithBot.coe_add]
simp [multideg'_mul hpq.1 hpq.2]
@[simp]
lemma multideg_eq_zero_iff: multideg q = 0 ↔ ∃ c : R, q = C c := by
constructor
·
intros hq
rw [multideg_apply, ] at hq
-- rw [zero_le'''] at this
have := (Finset.sup_eq_bot_iff (α:=TermOrder (σ→₀ℕ)) id q.support).mp hq
by_cases hq' : q.support.Nonempty
·
have : q.support = {0} :=
eq_singleton_iff_nonempty_unique_mem.mpr ⟨hq', this⟩
use q.coeff 0
rw [as_sum q]
-- simp? [this]
simp only [this, sum_singleton, monomial_zero', coeff_C, ite_true]
·
use 0
-- simp? [hq, ←support_eq_empty, not_nonempty_iff_eq_empty.mp hq']
simp only [map_zero, ne_eq, ←support_eq_empty,
not_nonempty_iff_eq_empty.mp hq']
·
rintro ⟨c, hq⟩
-- simp? [hq]
simp only [hq, multideg_C]
@[simp]
lemma leading_coeff_mul [NoZeroDivisors R]:
leading_coeff (p * q) = leading_coeff p * leading_coeff q := by
by_cases hpq: p * q = 0
·
cases' (mul_eq_zero.mp hpq) with h h
<;> simp [h, (leading_coeff_eq_zero_iff _).mpr]
·
let ⟨p_ne_zero, q_ne_zero⟩ := mul_ne_zero_iff.mp hpq
rw [←coeff_multideg'_add_mul]
unfold leading_coeff
-- simp? [p_ne_zero, q_ne_zero, multideg'_mul]
simp only [ne_eq, mul_eq_zero, p_ne_zero, q_ne_zero, or_self,
not_false_iff, multideg'_mul, dite_eq_ite, ite_true]
exact p_ne_zero
exact q_ne_zero
@[simp]
lemma leading_coeff_C: leading_coeff (C a: MvPolynomial σ R) = a := by
rw [leading_coeff_def, multideg_C]
-- simp?
simp only [coeff_C, ite_true]
@[simp]
lemma leading_coeff_0: leading_coeff (0: MvPolynomial σ R) = 0 := rfl
@[simp]
lemma leading_coeff_1: leading_coeff (1: MvPolynomial σ R) = 1 :=
(C_1 (R:=R) (σ:=σ)).symm ▸ leading_coeff_C
@[simp]
lemma leading_term_1 : leading_term (1 : MvPolynomial σ R) = 1 := by
simp [leading_term_def]
rfl
lemma lm_mul [NoZeroDivisors R]: lm (p * q) = lm p * lm q := by
by_cases hpq: p * q = 0
·
cases' (mul_eq_zero.mp hpq) with h h <;> simp [h, (lm_eq_zero_iff _).mpr]
·
let ⟨p_ne_zero, q_ne_zero⟩ := mul_ne_zero_iff.mp hpq
simp [lm, p_ne_zero, q_ne_zero, multideg'_mul p_ne_zero q_ne_zero]
@[simp]
lemma lm_0 : lm (0 : MvPolynomial σ R) = 0 := by simp [lm]
@[simp]
lemma lm_1 : lm (1 : MvPolynomial σ R) = 1 := by
rw [lm]
by_cases h : 1 = (0 : MvPolynomial σ R)
· simp [h]
· simp [h]
rfl
lemma leading_term_mul [NoZeroDivisors R]:
leading_term (p * q) = leading_term p * leading_term q := by
repeat rw [←leading_coeff_smul_lm_eq_leading_term]
repeat rw [lm_mul, leading_coeff_mul]
rw [smul_mul_smul]
noncomputable def MultiplicativeWithBotTermOrderMulZeroOneClass :
MulZeroOneClass (Multiplicative (WithBot (TermOrder (σ →₀ ℕ)))) := {
one := 1
one_mul := by simp
mul_one := by simp
zero := ⊥,
zero_mul := by
intro x
let x : WithBot (TermOrder (σ →₀ ℕ)) := x
show ⊥ + x = ⊥
simp [WithBot.map_bot (·+x)]
mul_zero := by
intro x
let x : WithBot (TermOrder (σ →₀ ℕ)) := x
show x + ⊥ = ⊥
simp [WithBot.map_bot (x+·)]
}
private noncomputable instance :
MulZeroOneClass (Multiplicative (WithBot (TermOrder (σ →₀ ℕ)))) :=
MultiplicativeWithBotTermOrderMulZeroOneClass
noncomputable def multideg''MulHomo'
[Nontrivial R] [Inhabited σ] [NoZeroDivisors R]:
MvPolynomial σ R →*₀ Multiplicative (WithBot (TermOrder (σ→₀ℕ))) := {
toFun := multideg'',
map_zero' := multideg''_zero,
map_one' := multideg''_1,
map_mul' := fun x y => multideg''_mul (p:=x) (q:=y)
}
noncomputable def leading_coeffMulHomo [NoZeroDivisors R]:
MvPolynomial σ R →*₀ R :=
{
toFun := leading_coeff
map_one' := C_1 (R:=R) (σ:=σ) ▸ leading_coeff_C (a:=1)
map_mul' := by simp only [leading_coeff_mul, forall_const]
map_zero' := by simp [leading_coeff]
}
noncomputable def lmMulHomo [NoZeroDivisors R]:
MvPolynomial σ R →*₀ MvPolynomial σ R :=
{
toFun := lm,
map_one' := lm_1,
map_zero' := lm_0,
map_mul' := fun p q => lm_mul (p:=p) (q:=q)
}
noncomputable def leading_termMulHomo [NoZeroDivisors R] :
MvPolynomial σ R →*₀ MvPolynomial σ R :=
{
toFun := leading_term,
map_zero' := leading_term_0,
map_one' := leading_term_1,
map_mul' := fun x y => leading_term_mul (p:=x) (q:=y)
}
lemma multideg_add_le_right
{p q: MvPolynomial σ R} (h: multideg p <= multideg q):
multideg (p + q) ≤ multideg q := by
-- conv_lhs => unfold multideg
nth_rewrite 1 [multideg]
-- simp?
simp only [Finset.sup_le_iff, id_eq]
intros b hb
rw [mem_support_iff, coeff_add] at hb
by_contra hq
-- simp? at hq
simp only [ne_eq, not_le] at hq
apply hb
rw [coeff_eq_zero_of_multideg_lt hq,
coeff_eq_zero_of_multideg_lt (lt_of_le_of_lt h hq), add_zero]
lemma multideg_add_le_left
{p q: MvPolynomial σ R} (h: multideg q <= multideg p):
multideg (p + q) ≤ multideg p := add_comm p q ▸ multideg_add_le_right h
theorem multideg_add_le: multideg (p+q) ≤ max p.multideg q.multideg := by
-- simp?
simp only [ne_eq, ge_iff_le, le_max_iff]
by_cases h: multideg p <= multideg q
·
right
exact multideg_add_le_right h
·
left
-- simp? at h
simp only [ne_eq, not_le] at h
exact multideg_add_le_left (le_of_lt h)
theorem multideg''_add_le : multideg'' (p+q) ≤ max p.multideg'' q.multideg''
:= by
by_cases h : p = 0 ∨ q = 0
·cases' h with h h <;> simp [h]
·
by_cases hpq : p + q = 0
·simp [hpq]
push_neg at h
cases' h with hp hq
rw [←multideg'_eq_multideg'' hp, ←multideg'_eq_multideg'' hq,
←multideg'_eq_multideg'' hpq, multideg'_eq_multideg,
multideg'_eq_multideg, multideg'_eq_multideg]
have := multideg_add_le (p:=p) (q:=q)
simp at this
simp [this]
lemma multideg_add_eq_right
{p q: MvPolynomial σ R} (h: multideg p < multideg q):
multideg (p+q) = multideg q := by
have q_ne_zero :=
ne_zero_of_multideg_ne_zero $ ne_bot_of_gt h
have h₁: coeff (multideg q) (p + q) ≠ 0 := by
rw [coeff_add, coeff_eq_zero_of_multideg_lt h,
zero_add, ←leading_coeff_def]
exact (leading_coeff_eq_zero_iff q).not.mpr q_ne_zero
have pq_ne_zero : p + q ≠ 0 := ne_zero_iff.mpr ⟨q.multideg, h₁⟩
apply Eq.symm
rw [←multideg'_eq_multideg pq_ne_zero, multideg'_iff]
constructor
·exact h₁
·
intros s' hs'
rw [coeff_add,
coeff_eq_zero_of_multideg_lt hs',
coeff_eq_zero_of_multideg_lt (lt_trans h hs'),
zero_add]
lemma multideg_add_eq_left
{p q: MvPolynomial σ R} (h: multideg q < multideg p):
multideg (p+q) = multideg p :=
add_comm p q ▸ multideg_add_eq_right h
-- TODO: mathlib
theorem monomial_add {s : σ →₀ ℕ} {a b : R} :
monomial s (a+b) = monomial s a + monomial s b :=
AddMonoidAlgebra.single_add s a b
lemma multideg_add_lt_left_iff (h : q.multideg ≤ p.multideg)
(h₂: p + q ≠ 0):
multideg (p+q) < p.multideg ↔ leading_term p + leading_term q = 0 := by
rw [leading_term_def, leading_term_def]
constructor
· intro hpq
have hcoeff : (p+q).coeff p.multideg = 0 := by
rw [coeff_eq_zero_of_multideg_lt]
exact hpq
have p_ne_zero : p ≠ 0 := by
apply ne_zero_of_multideg_ne_zero
exact (ne_of_lt (lt_of_le_of_lt (zero_le''' (p+q).multideg) hpq)).symm
have hdeg : p.multideg = q.multideg := by
by_contra hdeg
rw [coeff_add] at hcoeff
rw [coeff_eq_zero_of_multideg_lt (lt_of_le_of_ne' h hdeg)] at hcoeff
simp [←leading_coeff_def, p_ne_zero] at hcoeff
rw [hdeg, ←monomial_add]
rw [monomial_eq_zero, leading_coeff_def, leading_coeff_def,
←hdeg, ←coeff_add]
exact hcoeff
· intro hpq
apply lt_of_le_of_ne (multideg_add_le_left h)
by_contra hpq'
by_cases hpq'' : p.multideg = q.multideg
· rw [←hpq'', ←hpq', ←monomial_add, monomial_eq_zero] at hpq
rw [leading_coeff_def, leading_coeff_def, ←hpq'', ←hpq'] at hpq
rw [←coeff_add, ←leading_coeff_def, leading_coeff_eq_zero_iff] at hpq
exact h₂ hpq
· change @Ne (σ →₀ ℕ) p.multideg q.multideg at hpq''
have hp := hpq.symm ▸ coeff_zero p.multideg
simp [hpq''.symm] at hp
have hq := hpq.symm ▸ coeff_zero q.multideg
simp [hpq''] at hq
simp [hp, hq] at h₂
lemma coeff_multideg'_ne_zero : p.coeff (p.multideg' p_ne_zero) ≠ 0 :=
mem_support_iff.mp (multideg'_in_support p p_ne_zero)
variable (p q : MvPolynomial σ R) (s : σ→₀ℕ) (a : R)
@[simp]
lemma multideg_monomial : multideg (monomial s a) = if a = 0 then 0 else s :=
by
by_cases ha : a = 0
·-- simp? [ha]
simp only [ha, map_zero, multideg_zero, ite_true]
·-- simp? [ha, multideg, support_monomial]
simp only [multideg, support_monomial, ha, ite_false, sup_singleton, id_eq]
@[simp]
lemma multideg''_monomial :
multideg'' (monomial s a) =
if a = 0 then ⊥ else (s : WithBot (σ→₀ℕ)) :=
by
by_cases ha : a = 0
· simp [ha]
· simp [ha, multideg'', support_monomial]
@[simp]
lemma leading_coeff_monomial : leading_coeff (monomial s a) = a := by
by_cases ha : a = 0 <;> simp [leading_coeff_def, multideg_monomial, ha]
@[simp] lemma multideg_leading_term : p.leading_term.multideg = p.multideg :=
by
rw [leading_term_def]
-- simp?
simp only [ne_eq, multideg_monomial, leading_coeff_eq_zero_iff,
ite_eq_left_iff, not_forall, exists_prop, monomial_eq_zero,
ite_eq_right_iff]
intro hp
-- simp? [hp]
simp only [hp, multideg_zero]
@[simp] lemma multideg''_leading_term : p.leading_term.multideg'' = p.multideg'' :=
by
rw [leading_term_def]
simp [multideg''_def]
by_cases h : p = 0 <;> simp [h]
@[simp] lemma multideg_lm : p.lm.multideg = p.multideg := by
rw [lm]
by_cases h : p = 0
·-- simp? [h]
simp only [h, ne_eq, not_true, dite_false, multideg_zero]
·
-- simp? [h]
simp only [ne_eq, h, not_false_eq_true, dite_true, multideg_monomial]
by_cases if_trivial: Nontrivial R
·-- simp? [multideg'_eq_multideg]
simp only [one_ne_zero, multideg'_eq_multideg, ite_false]
·
have all_mem_eq := nontrivial_iff.not.mp if_trivial
push_neg at all_mem_eq
-- simp?[all_mem_eq 1 0,p.leading_coeff_eq_zero_iff.mp (all_mem_eq _ _)]
simp only [all_mem_eq 1 0, ite_true, multideg_zero,
p.leading_coeff_eq_zero_iff.mp (all_mem_eq _ _)]
@[simp] lemma leading_term_leading_term :
p.leading_term.leading_term = p.leading_term := by
rw [leading_term_def]
nth_rewrite 3 [leading_term_def]
-- simp? [monomial_eq_monomial_iff]
simp only [multideg_leading_term, monomial_eq_monomial_iff, true_and]
left
rw [leading_term_def]
-- simp?
simp only [leading_coeff_monomial]
lemma leading_term_mul'_right [NoZeroDivisors R]:
(p * q).leading_term = (p.leading_term * q).leading_term := by
rw [leading_term_mul, leading_term_mul, leading_term_leading_term]
lemma leading_term_mul'_left [NoZeroDivisors R]:
(p * q).leading_term = (p * q.leading_term).leading_term := by
rw [leading_term_mul, leading_term_mul, leading_term_leading_term]
variable {R : Type _} [CommRing R] (p q : MvPolynomial σ R)
@[simp] lemma multideg_neg : (-p).multideg = p.multideg := by
rw [multideg, multideg]
simp only [support_neg]
@[simp] lemma multideg''_neg : (-p).multideg'' = p.multideg'' := by
rw [multideg'', multideg'']
simp only [support_neg]
@[simp] lemma leading_coeff_neg : (-p).leading_coeff = -p.leading_coeff := by
-- simp? [leading_coeff_def]
simp only [leading_coeff_def, multideg_neg, coeff_neg]
@[simp] lemma leading_term_neg : (-p).leading_term = -p.leading_term := by
rw [leading_term_def, leading_term_def]
-- simp?
simp only [multideg_neg, leading_coeff_neg, map_neg]
lemma multideg_sub_lt_left_iff
{p q : MvPolynomial σ R} (h : q.multideg ≤ p.multideg) (h₂ : p - q≠0) :
multideg (p - q) < p.multideg ↔ p.leading_term = q.leading_term := by
rw [sub_eq_add_neg] at h₂
rw [←multideg_neg (p:=q)] at h
rw [sub_eq_add_neg, multideg_add_lt_left_iff h h₂, leading_term_neg]
rw [add_neg_eq_zero]
@[simp] lemma coeff_lm_of_ne_zero (h : p ≠ 0):
coeff p.multideg p.lm = 1 := by
-- simp? [lm, h, multideg'_eq_multideg]
simp only [lm._eq_1, ne_eq, multideg_eq_zero_iff, not_exists, h,
not_false_eq_true, multideg'_eq_multideg, dite_eq_ite,
ite_true, coeff_monomial]
@[simp]
lemma sub_multideg_le [CommRing R₁] {p q: MvPolynomial σ R₁}
(h: multideg q ≤ multideg p) :
multideg (q - q.coeff p.multideg • p.lm) ≤ multideg p := by
rw [smul_eq_C_mul, sub_eq_add_neg, ←neg_mul (C (coeff (multideg p) q)) p.lm]
refine le_trans multideg_add_le ?_
by_cases hc : q.coeff p.multideg = 0
·-- simp? [h, hc]
simp only [hc, map_zero, neg_zero, zero_mul, multideg_zero,
ge_iff_le, zero_le''', max_eq_left, h]
·
-- simp? [h]
simp only [neg_mul, multideg_neg, ge_iff_le, max_le_iff, h, true_and]
refine le_trans multideg_mul_le ?_
-- simp? [multideg_lm]
simp only [multideg_C, multideg_lm, zero_add, le_refl]
@[simp]
lemma sub_multideg_lt [CommRing R₁] {p q: MvPolynomial σ R₁} (hp: p ≠ 0)
(h: multideg q ≤ multideg p) :
q - q.coeff p.multideg • lm p = 0 ∨
multideg (q - q.coeff p.multideg • lm p) < multideg p := by
by_cases h' : q - q.coeff p.multideg • lm p = 0
·
left
exact h'
·
right
apply lt_of_le_of_ne (sub_multideg_le h)
by_contra hp'
rw [←(leading_coeff_eq_zero_iff _).not, leading_coeff_def, hp'] at h'
simp [hp] at h'
@[simp]
lemma sub_multideg''_lt [CommRing R₁] {p q: MvPolynomial σ R₁} (hp: p ≠ 0)
(h: multideg q ≤ multideg p) :
multideg'' (q - q.coeff p.multideg • lm p) < multideg'' p := by
-- simp? [multideg''_def, hp]
simp only [multideg''_def, ne_eq, multideg_eq_zero_iff,
not_exists, hp, ite_false]
by_cases h' : q - q.coeff p.multideg • lm p = 0
·
-- simp? [h', WithBot.bot_lt_coe]
simp only [h', multideg_zero, ite_true, WithBot.bot_lt_coe]
·
-- simp? [hp, h']
simp only [ne_eq, multideg_eq_zero_iff, not_exists, h',
ite_false, WithBot.coe_lt_coe]
exact (or_iff_right h').mp (sub_multideg_lt hp h)