forked from huggingface/accelerate
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_sagemaker.py
62 lines (56 loc) · 1.85 KB
/
test_sagemaker.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
import unittest
from dataclasses import dataclass
import pytest
from accelerate.commands.config.config_args import SageMakerConfig
from accelerate.commands.launch import _convert_nargs_to_dict
from accelerate.utils import ComputeEnvironment
@dataclass
class MockLaunchConfig(SageMakerConfig):
compute_environment = ComputeEnvironment.AMAZON_SAGEMAKER
fp16 = True
ec2_instance_type = "ml.p3.2xlarge"
iam_role_name = "accelerate_sagemaker_execution_role"
profile = "hf-sm"
region = "us-east-1"
num_machines = 1
base_job_name = "accelerate-sagemaker-1"
pytorch_version = "1.6"
transformers_version = "4.4"
training_script = "train.py"
success_training_script_args = [
"--model_name_or_path",
"bert",
"--do_train",
"False",
"--epochs",
"3",
"--learning_rate",
"5e-5",
"--max_steps",
"50.5",
]
fail_training_script_args = [
"--model_name_or_path",
"bert",
"--do_train",
"--do_test",
"False",
"--do_predict",
"--epochs",
"3",
"--learning_rate",
"5e-5",
"--max_steps",
"50.5",
]
class SageMakerLaunch(unittest.TestCase):
def test_args_convert(self):
# If no defaults are changed, `to_kwargs` returns an empty dict.
converted_args = _convert_nargs_to_dict(MockLaunchConfig.success_training_script_args)
assert isinstance(converted_args["model_name_or_path"], str)
assert isinstance(converted_args["do_train"], bool)
assert isinstance(converted_args["epochs"], int)
assert isinstance(converted_args["learning_rate"], float)
assert isinstance(converted_args["max_steps"], float)
with pytest.raises(ValueError):
_convert_nargs_to_dict(MockLaunchConfig.fail_training_script_args)