forked from huggingface/accelerate
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_utils.py
85 lines (69 loc) · 3.59 KB
/
test_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import pickle
import unittest
from collections import UserDict, namedtuple
import torch
from accelerate.test_utils.training import RegressionModel
from accelerate.utils import convert_outputs_to_fp32, find_device, patch_environment, send_to_device
ExampleNamedTuple = namedtuple("ExampleNamedTuple", "a b c")
class UtilsTester(unittest.TestCase):
def test_send_to_device(self):
tensor = torch.randn(5, 2)
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
result1 = send_to_device(tensor, device)
self.assertTrue(torch.equal(result1.cpu(), tensor))
result2 = send_to_device((tensor, [tensor, tensor], 1), device)
self.assertIsInstance(result2, tuple)
self.assertTrue(torch.equal(result2[0].cpu(), tensor))
self.assertIsInstance(result2[1], list)
self.assertTrue(torch.equal(result2[1][0].cpu(), tensor))
self.assertTrue(torch.equal(result2[1][1].cpu(), tensor))
self.assertEqual(result2[2], 1)
result2 = send_to_device({"a": tensor, "b": [tensor, tensor], "c": 1}, device)
self.assertIsInstance(result2, dict)
self.assertTrue(torch.equal(result2["a"].cpu(), tensor))
self.assertIsInstance(result2["b"], list)
self.assertTrue(torch.equal(result2["b"][0].cpu(), tensor))
self.assertTrue(torch.equal(result2["b"][1].cpu(), tensor))
self.assertEqual(result2["c"], 1)
result3 = send_to_device(ExampleNamedTuple(a=tensor, b=[tensor, tensor], c=1), device)
self.assertIsInstance(result3, ExampleNamedTuple)
self.assertTrue(torch.equal(result3.a.cpu(), tensor))
self.assertIsInstance(result3.b, list)
self.assertTrue(torch.equal(result3.b[0].cpu(), tensor))
self.assertTrue(torch.equal(result3.b[1].cpu(), tensor))
self.assertEqual(result3.c, 1)
result4 = send_to_device(UserDict({"a": tensor, "b": [tensor, tensor], "c": 1}), device)
self.assertIsInstance(result4, UserDict)
self.assertTrue(torch.equal(result4["a"].cpu(), tensor))
self.assertIsInstance(result4["b"], list)
self.assertTrue(torch.equal(result4["b"][0].cpu(), tensor))
self.assertTrue(torch.equal(result4["b"][1].cpu(), tensor))
self.assertEqual(result4["c"], 1)
def test_patch_environment(self):
with patch_environment(aa=1, BB=2):
self.assertEqual(os.environ.get("AA"), "1")
self.assertEqual(os.environ.get("BB"), "2")
self.assertNotIn("AA", os.environ)
self.assertNotIn("BB", os.environ)
def test_convert_to_32_lets_model_pickle(self):
model = RegressionModel()
model.forward = convert_outputs_to_fp32(model.forward)
_ = pickle.dumps(model)
def test_find_device(self):
self.assertEqual(find_device([1, "a", torch.tensor([1, 2, 3])]), torch.device("cpu"))
self.assertEqual(find_device({"a": 1, "b": torch.tensor([1, 2, 3])}), torch.device("cpu"))
self.assertIsNone(find_device([1, "a"]))