forked from google/ffn
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathhorovod_train.py
958 lines (775 loc) · 35.1 KB
/
horovod_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
# Copyright 2017 Google Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Driver script for FFN training with horovod.
The FFN is first run on single seed point. The mask prediction for that seed
point is then used to train subsequent steps of the FFN by moving the field
of view in a way dependent on the initial predictions.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from collections import deque
from io import BytesIO
from functools import partial
import itertools
import json
import logging
import os
import random
import time
import h5py
import numpy as np
import PIL
import PIL.Image
import six
from scipy.special import expit
from scipy.special import logit
import tensorflow as tf
from tensorflow.python.framework import ops
from absl import app
from absl import flags
gfile = tf.io.gfile
from ffn.inference import movement
from ffn.training import mask
from ffn.training.import_util import import_symbol
from ffn.training import inputs
from ffn.training import augmentation
# Necessary so that optimizer flags are defined.
# pylint: disable=unused-import
from ffn.training import optimizer
# pylint: enable=unused-import
import horovod.tensorflow as hvd
import sys
from mpi4py import MPI
comm = MPI.COMM_WORLD
rank = comm.rank
tf.compat.v1.disable_eager_execution()
FLAGS = flags.FLAGS
# Options related to training data.
flags.DEFINE_string('train_coords', None,
'Glob for the TFRecord of training coordinates.')
flags.DEFINE_string('data_volumes', None,
'Comma-separated list of <volume_name>:<volume_path>:'
'<dataset>, where volume_name need to match the '
'"label_volume_name" field in the input example, '
'volume_path points to HDF5 volumes containing uint8 '
'image data, and `dataset` is the name of the dataset '
'from which data will be read.')
flags.DEFINE_string('label_volumes', None,
'Comma-separated list of <volume_name>:<volume_path>:'
'<dataset>, where volume_name need to match the '
'"label_volume_name" field in the input example, '
'volume_path points to HDF5 volumes containing int64 '
'label data, and `dataset` is the name of the dataset '
'from which data will be read.')
flags.DEFINE_string('model_name', None,
'Name of the model to train. Format: '
'[<packages>.]<module_name>.<model_class>, if packages is '
'missing "ffn.training.models" is used as default.')
flags.DEFINE_string('model_args', None,
'JSON string with arguments to be passed to the model '
'constructor.')
# Training infra options.
flags.DEFINE_string('train_dir', '/tmp',
'Path where checkpoints and other data will be saved.')
flags.DEFINE_string('master', '', 'Network address of the master.')
flags.DEFINE_integer('batch_size', 4, 'Number of images in a batch.')
flags.DEFINE_integer('task', 0, 'Task id of the replica running the training.')
flags.DEFINE_integer('ps_tasks', 0, 'Number of tasks in the ps job.')
flags.DEFINE_integer('max_steps', 10000, 'Number of steps to train for.')
flags.DEFINE_integer('replica_step_delay', 300,
'Require the model to reach step number '
'<replica_step_delay> * '
'<replica_id> before starting training on a given '
'replica.')
flags.DEFINE_integer('summary_rate_secs', 60,
'How often to save summaries (in seconds).')
# FFN training options.
flags.DEFINE_float('seed_pad', 0.05,
'Value to use for the unknown area of the seed.')
flags.DEFINE_float('threshold', 0.9,
'Value to be reached or exceeded at the new center of the '
'field of view in order for the network to inspect it.')
flags.DEFINE_enum('fov_policy', 'fixed', ['fixed', 'max_pred_moves'],
'Policy to determine where to move the field of the '
'network. "fixed" tries predefined offsets specified by '
'"model.shifts". "max_pred_moves" moves to the voxel with '
'maximum mask activation within a plane perpendicular to '
'one of the 6 Cartesian directions, offset by +/- '
'model.deltas from the current FOV position.')
# TODO(mjanusz): Implement fov_moves > 1 for the 'fixed' policy.
flags.DEFINE_integer('fov_moves', 1,
'Number of FOV moves by "model.delta" voxels to execute '
'in every dimension. Currently only works with the '
'"max_pred_moves" policy.')
flags.DEFINE_boolean('shuffle_moves', True,
'Whether to randomize the order of the moves used by the '
'network with the "fixed" policy.')
flags.DEFINE_float('image_mean', None,
'Mean image intensity to use for input normalization.')
flags.DEFINE_float('image_stddev', None,
'Image intensity standard deviation to use for input '
'normalization.')
flags.DEFINE_list('image_offset_scale_map', None,
'Optional per-volume specification of mean and stddev. '
'Every entry in the list is a colon-separated tuple of: '
'volume_label, offset, scale.')
flags.DEFINE_list('permutable_axes', ['1', '2'],
'List of integers equal to a subset of [0, 1, 2] specifying '
'which of the [z, y, x] axes, respectively, may be permuted '
'in order to augment the training data.')
flags.DEFINE_list('reflectable_axes', ['0', '1', '2'],
'List of integers equal to a subset of [0, 1, 2] specifying '
'which of the [z, y, x] axes, respectively, may be reflected '
'in order to augment the training data.')
FLAGS = flags.FLAGS
class EvalTracker(object):
"""Tracks eval results over multiple training steps."""
def __init__(self, eval_shape):
self.eval_labels = tf.compat.v1.placeholder(
tf.float32, [1] + eval_shape + [1], name='eval_labels')
self.eval_preds = tf.compat.v1.placeholder(
tf.float32, [1] + eval_shape + [1], name='eval_preds')
self.eval_loss = tf.reduce_mean(
input_tensor=tf.nn.sigmoid_cross_entropy_with_logits(
logits=self.eval_preds, labels=self.eval_labels))
self.reset()
self.eval_threshold = logit(0.9)
self.sess = None
self._eval_shape = eval_shape
def reset(self):
"""Resets status of the tracker."""
self.loss = 0
self.num_patches = 0
self.tp = 0
self.tn = 0
self.fn = 0
self.fp = 0
self.total_voxels = 0
self.masked_voxels = 0
self.images_xy = deque(maxlen=16)
self.images_xz = deque(maxlen=16)
self.images_yz = deque(maxlen=16)
def slice_image(self, labels, predicted, weights, slice_axis):
"""Builds a tf.Summary showing a slice of an object mask.
The object mask slice is shown side by side with the corresponding
ground truth mask.
Args:
labels: ndarray of ground truth data, shape [1, z, y, x, 1]
predicted: ndarray of predicted data, shape [1, z, y, x, 1]
weights: ndarray of loss weights, shape [1, z, y, x, 1]
slice_axis: axis in the middle of which to place the cutting plane
for which the summary image will be generated, valid values are
2 ('x'), 1 ('y'), and 0 ('z').
Returns:
tf.Summary.Value object with the image.
"""
zyx = list(labels.shape[1:-1])
selector = [0, slice(None), slice(None), slice(None), 0]
selector[slice_axis + 1] = zyx[slice_axis] // 2
selector = tuple(selector)
del zyx[slice_axis]
h, w = zyx
buf = BytesIO()
labels = (labels[selector] * 255).astype(np.uint8)
predicted = (predicted[selector] * 255).astype(np.uint8)
weights = (weights[selector] * 255).astype(np.uint8)
im = PIL.Image.fromarray(np.concatenate([labels, predicted,
weights], axis=1), 'L')
im.save(buf, 'PNG')
axis_names = 'zyx'
axis_names = axis_names.replace(axis_names[slice_axis], '')
return tf.compat.v1.Summary.Value(
tag='final_%s' % axis_names[::-1],
image=tf.compat.v1.Summary.Image(
height=h, width=w * 3, colorspace=1, # greyscale
encoded_image_string=buf.getvalue()))
def add_patch(self, labels, predicted, weights,
coord=None, volname=None, patches=None):
"""Evaluates single-object segmentation quality."""
predicted = mask.crop_and_pad(predicted, (0, 0, 0), self._eval_shape)
weights = mask.crop_and_pad(weights, (0, 0, 0), self._eval_shape)
labels = mask.crop_and_pad(labels, (0, 0, 0), self._eval_shape)
loss, = self.sess.run([self.eval_loss], {self.eval_labels: labels,
self.eval_preds: predicted})
self.loss += loss
self.total_voxels += labels.size
self.masked_voxels += np.sum(weights == 0.0)
pred_mask = predicted >= self.eval_threshold
true_mask = labels > 0.5
pred_bg = np.logical_not(pred_mask)
true_bg = np.logical_not(true_mask)
self.tp += np.sum(pred_mask & true_mask)
self.fp += np.sum(pred_mask & true_bg)
self.fn += np.sum(pred_bg & true_mask)
self.tn += np.sum(pred_bg & true_bg)
self.num_patches += 1
predicted = expit(predicted)
self.images_xy.append(self.slice_image(labels, predicted, weights, 0))
self.images_xz.append(self.slice_image(labels, predicted, weights, 1))
self.images_yz.append(self.slice_image(labels, predicted, weights, 2))
def slice_image_v2(self, labels, predicted, patches, slice_axis):
"""Builds a tf.Summary showing a slice of an object mask.
The object mask slice is shown side by side with the corresponding
ground truth mask.
Args:
labels: ndarray of ground truth data, shape [1, z, y, x, 1]
predicted: ndarray of predicted data, shape [1, z, y, x, 1]
patches: ndarray of patches data, shape [1, z, y, x, 1]
slice_axis: axis in the middle of which to place the cutting plane
for which the summary image will be generated, valid values are
2 ('x'), 1 ('y'), and 0 ('z').
Returns:
tf.Summary.Value object with the image.
"""
zyx = list(labels.shape[1:-1])
selector = [0, slice(None), slice(None), slice(None), 0]
selector[slice_axis + 1] = zyx[slice_axis] // 2
selector = tuple(selector)
del zyx[slice_axis]
h, w = zyx
buf = BytesIO()
labels = (labels[selector] * 255).astype(np.uint8)
predicted = (predicted[selector] * 255).astype(np.uint8)
pre_patches = patches[selector]
patches = ((pre_patches - np.min(pre_patches[:]) ) /
(np.max(pre_patches[:]) - np.min(pre_patches[:])) * 255).astype(np.uint8)
im = PIL.Image.fromarray(np.concatenate([labels, predicted,
patches], axis=1), 'L')
im.save(buf, 'PNG')
axis_names = 'zyx'
axis_names = axis_names.replace(axis_names[slice_axis], '')
return tf.compat.v1.Summary.Value(
tag='final_%s' % axis_names[::-1],
image=tf.compat.v1.Summary.Image(
height=h, width=w * 3, colorspace=1, # greyscale
encoded_image_string=buf.getvalue()))
def add_patch_v2(self, labels, predicted, weights,
coord=None, volname=None, patches=None):
"""Evaluates single-object segmentation quality."""
predicted = mask.crop_and_pad(predicted, (0, 0, 0), self._eval_shape)
patches = mask.crop_and_pad(patches, (0, 0, 0), self._eval_shape)
labels = mask.crop_and_pad(labels, (0, 0, 0), self._eval_shape)
loss, = self.sess.run([self.eval_loss], {self.eval_labels: labels,
self.eval_preds: predicted})
self.loss += loss
self.total_voxels += labels.size
self.masked_voxels += np.sum(patches == 0.0)
pred_mask = predicted >= self.eval_threshold
true_mask = labels > 0.5
pred_bg = np.logical_not(pred_mask)
true_bg = np.logical_not(true_mask)
self.tp += np.sum(pred_mask & true_mask)
self.fp += np.sum(pred_mask & true_bg)
self.fn += np.sum(pred_bg & true_mask)
self.tn += np.sum(pred_bg & true_bg)
self.num_patches += 1
predicted = expit(predicted)
self.images_xy.append(self.slice_image_v2(labels, predicted, patches, 0))
self.images_xz.append(self.slice_image_v2(labels, predicted, patches, 1))
self.images_yz.append(self.slice_image_v2(labels, predicted, patches, 2))
def get_summaries(self):
"""Gathers tensorflow summaries into single list."""
if not self.total_voxels:
return []
precision = self.tp / max(self.tp + self.fp, 1)
recall = self.tp / max(self.tp + self.fn, 1)
for images in self.images_xy, self.images_xz, self.images_yz:
for i, summary in enumerate(images):
summary.tag += '/%d' % i
summaries = (
list(self.images_xy) + list(self.images_xz) + list(self.images_yz) + [
tf.compat.v1.Summary.Value(tag='masked_voxel_fraction',
simple_value=(self.masked_voxels /
self.total_voxels)),
tf.compat.v1.Summary.Value(tag='eval/patch_loss',
simple_value=self.loss / self.num_patches),
tf.compat.v1.Summary.Value(tag='eval/patches',
simple_value=self.num_patches),
tf.compat.v1.Summary.Value(tag='eval/accuracy',
simple_value=(self.tp + self.tn) / (
self.tp + self.tn + self.fp + self.fn)),
tf.compat.v1.Summary.Value(tag='eval/precision',
simple_value=precision),
tf.compat.v1.Summary.Value(tag='eval/recall',
simple_value=recall),
tf.compat.v1.Summary.Value(tag='eval/specificity',
simple_value=self.tn / max(self.tn + self.fp, 1)),
tf.compat.v1.Summary.Value(tag='eval/f1',
simple_value=(2.0 * precision * recall /
(precision + recall)))
])
return summaries
def run_training_step(sess, model, fetch_summary, feed_dict):
"""Runs one training step for a single FFN FOV."""
ops_to_run = [model.train_op, model.global_step, model.logits]
if fetch_summary is not None:
ops_to_run.append(fetch_summary)
results = sess.run(ops_to_run, feed_dict)
step, prediction = results[1:3]
if fetch_summary is not None:
summ = results[-1]
else:
summ = None
return prediction, step, summ
def fov_moves():
# Add one more move to get a better fill of the evaluation area.
if FLAGS.fov_policy == 'max_pred_moves':
return FLAGS.fov_moves + 1
return FLAGS.fov_moves
def train_labels_size(model):
return (np.array(model.pred_mask_size) +
np.array(model.deltas) * 2 * fov_moves())
def train_eval_size(model):
return (np.array(model.pred_mask_size) +
np.array(model.deltas) * 2 * FLAGS.fov_moves)
def train_image_size(model):
return (np.array(model.input_image_size) +
np.array(model.deltas) * 2 * fov_moves())
def train_canvas_size(model):
return (np.array(model.input_seed_size) +
np.array(model.deltas) * 2 * fov_moves())
def _get_offset_and_scale_map():
if not FLAGS.image_offset_scale_map:
return {}
ret = {}
for vol_def in FLAGS.image_offset_scale_map:
vol_name, offset, scale = vol_def.split(':')
ret[vol_name] = float(offset), float(scale)
return ret
def _get_reflectable_axes():
return [int(x) + 1 for x in FLAGS.reflectable_axes]
def _get_permutable_axes():
return [int(x) + 1 for x in FLAGS.permutable_axes]
def read_h5_sources():
"""Read h5 file once, assuming training data can fit in memory"""
image_volume_map = {}
for vol in FLAGS.data_volumes.split(','):
volname, path, dataset = vol.split(':')
image_volume_map[volname] = h5py.File(path, 'r')[dataset]
label_volume_map = {}
for vol in FLAGS.label_volumes.split(','):
volname, path, dataset = vol.split(':')
label_volume_map[volname] = h5py.File(path, 'r')[dataset]
return image_volume_map, label_volume_map
def parser(proto):
examples = tf.io.parse_single_example(serialized=proto, features=dict(
center=tf.io.FixedLenFeature(shape=[1, 3], dtype=tf.int64),
label_volume_name=tf.io.FixedLenFeature(shape=[1], dtype=tf.string),
))
coord = examples['center']
volname = examples['label_volume_name']
return coord, volname
# return coord
def h5_distributed_dataset_v2(model, queue_batch=None):
def read_data(coord, volname):
#coord, volname = value
labels = inputs.load_from_numpylike(
coord, volname, label_size, label_volume_map)
label_shape = [1] + label_size[::-1] + [1]
labels = tf.reshape(labels, label_shape)
loss_weights = tf.constant(np.ones(label_shape, dtype=np.float32))
# Load image data.
patch = inputs.load_from_numpylike(
coord, volname, image_size, image_volume_map)
data_shape = [1] + image_size[::-1] + [1]
patch = tf.reshape(patch, shape=data_shape)
if ((FLAGS.image_stddev is None or FLAGS.image_mean is None) and
not FLAGS.image_offset_scale_map):
raise ValueError('--image_mean, --image_stddev or --image_offset_scale_map '
'need to be defined')
# Convert segmentation into a soft object mask.
lom = tf.logical_and(
labels > 0,
tf.equal(labels, labels[0,
label_radii[2],
label_radii[1],
label_radii[0],
0]))
labels = inputs.soften_labels(lom)
# Apply basic augmentations.
transform_axes = augmentation.PermuteAndReflect(
rank=5, permutable_axes=_get_permutable_axes(),
reflectable_axes=_get_reflectable_axes())
labels = transform_axes(labels)
patch = transform_axes(patch)
loss_weights = transform_axes(loss_weights)
# return (patch[0], labels[0], loss_weights[0], coord[0], volname[0])
return (patch, labels, loss_weights, coord, volname)
if queue_batch is None:
queue_batch = FLAGS.batch_size
image_volume_map = {}
for vol in FLAGS.data_volumes.split(','):
volname, path, dataset = vol.split(':')
image_volume_map[volname] = h5py.File(path, 'r')[dataset]
label_volume_map = {}
for vol in FLAGS.label_volumes.split(','):
volname, path, dataset = vol.split(':')
label_volume_map[volname] = h5py.File(path, 'r')[dataset]
# Fetch sizes of images and labels
label_size = train_labels_size(model)
image_size = train_image_size(model)
label_radii = (label_size // 2).tolist()
label_size = label_size.tolist()
image_radii = (image_size // 2).tolist()
image_size = image_size.tolist()
# Fetch a single coordinate and volume name from a queue reading the
# coordinate files or from saved hard/important examples
fnames = tf.io.matching_files(FLAGS.train_coords+'*')
ds = tf.data.TFRecordDataset(fnames, compression_type='GZIP')
ds = ds.map(parser, num_parallel_calls=tf.data.experimental.AUTOTUNE)
ds = ds.map(read_data, num_parallel_calls=tf.data.experimental.AUTOTUNE)
ds = ds.prefetch(100)
# ds = ds.batch(queue_batch)
ds = ds.shard(hvd.size(), hvd.rank())
return tf.compat.v1.data.make_one_shot_iterator(ds).get_next()
def h5_distributed_dataset(model, queue_batch=None, rank=0):
if queue_batch is None:
queue_batch = FLAGS.batch_size
image_volume_map = {}
for vol in FLAGS.data_volumes.split(','):
volname, path, dataset = vol.split(':')
image_volume_map[volname] = h5py.File(path, 'r')[dataset]
label_volume_map = {}
for vol in FLAGS.label_volumes.split(','):
volname, path, dataset = vol.split(':')
label_volume_map[volname] = h5py.File(path, 'r')[dataset]
# Fetch sizes of images and labels
label_size = train_labels_size(model)
image_size = train_image_size(model)
label_radii = (label_size // 2).tolist()
label_size = label_size.tolist()
image_radii = (image_size // 2).tolist()
image_size = image_size.tolist()
# Fetch a single coordinate and volume name from a queue reading the
# coordinate files or from saved hard/important examples
fnames = tf.io.matching_files(FLAGS.train_coords+'*')
logging.info('fnames %s', fnames)
ds = tf.data.TFRecordDataset(fnames, compression_type='GZIP')
#ds = tf.data.TFRecordDataset([FLAGS.train_coords], compression_type='GZIP')
ds = ds.map(parser, num_parallel_calls=40).repeat()
ds.prefetch(1000)
ds = ds.shard(hvd.size(), hvd.rank())
value = tf.compat.v1.data.make_one_shot_iterator(ds).get_next()
coord, volname = value
# Load object labels (segmentation).
labels = inputs.load_from_numpylike(
coord, volname, label_size, label_volume_map)
label_shape = [1] + label_size[::-1] + [1]
labels = tf.reshape(labels, label_shape)
loss_weights = tf.constant(np.ones(label_shape, dtype=np.float32))
# Load image data.
patch = inputs.load_from_numpylike(
coord, volname, image_size, image_volume_map)
data_shape = [1] + image_size[::-1] + [1]
patch = tf.reshape(patch, shape=data_shape)
if ((FLAGS.image_stddev is None or FLAGS.image_mean is None) and
not FLAGS.image_offset_scale_map):
raise ValueError('--image_mean, --image_stddev or --image_offset_scale_map '
'need to be defined')
# Convert segmentation into a soft object mask.
lom = tf.logical_and(
labels > 0,
tf.equal(labels, labels[0,
label_radii[2],
label_radii[1],
label_radii[0],
0]))
labels = inputs.soften_labels(lom)
# Apply basic augmentations.
transform_axes = augmentation.PermuteAndReflect(
rank=5, permutable_axes=_get_permutable_axes(),
reflectable_axes=_get_reflectable_axes())
labels = transform_axes(labels)
patch = transform_axes(patch)
loss_weights = transform_axes(loss_weights)
# Normalize image data.
patch = inputs.offset_and_scale_patches(
patch, volname[0],
offset_scale_map=_get_offset_and_scale_map(),
default_offset=FLAGS.image_mean,
default_scale=FLAGS.image_stddev)
# Create a batch of examples. Note that any TF operation before this line
# will be hidden behind a queue, so expensive/slow ops can take advantage
# of multithreading.
patches, labels, loss_weights = tf.compat.v1.train.shuffle_batch(
[patch, labels, loss_weights], queue_batch,
num_threads=max(1, FLAGS.batch_size // 2),
capacity=32 * FLAGS.batch_size,
min_after_dequeue=4 * FLAGS.batch_size,
enqueue_many=True)
return (patches, labels, loss_weights, coord, volname)
def prepare_ffn(model):
"""Creates the TF graph for an FFN."""
shape = [FLAGS.batch_size] + list(model.pred_mask_size[::-1]) + [1]
model.labels = tf.compat.v1.placeholder(tf.float32, shape, name='labels')
model.loss_weights = tf.compat.v1.placeholder(tf.float32, shape, name='loss_weights')
model.define_tf_graph()
def fixed_offsets(model, seed, fov_shifts=None):
"""Generates offsets based on a fixed list."""
for off in itertools.chain([(0, 0, 0)], fov_shifts):
if model.dim == 3:
is_valid_move = seed[:,
seed.shape[1] // 2 + off[2],
seed.shape[2] // 2 + off[1],
seed.shape[3] // 2 + off[0],
0] >= logit(FLAGS.threshold)
else:
is_valid_move = seed[:,
seed.shape[1] // 2 + off[1],
seed.shape[2] // 2 + off[0],
0] >= logit(FLAGS.threshold)
if not is_valid_move:
continue
yield off
def max_pred_offsets(model, seed):
"""Generates offsets with the policy used for inference."""
# Always start at the center.
queue = deque([(0, 0, 0)])
done = set()
train_image_radius = train_image_size(model) // 2
input_image_radius = np.array(model.input_image_size) // 2
while queue:
offset = queue.popleft()
# Drop any offsets that would take us beyond the image fragment we
# loaded for training.
if np.any(np.abs(np.array(offset)) + input_image_radius >
train_image_radius):
continue
# Ignore locations that were visited previously.
quantized_offset = (
offset[0] // max(model.deltas[0], 1),
offset[1] // max(model.deltas[1], 1),
offset[2] // max(model.deltas[2], 1))
if quantized_offset in done:
continue
done.add(quantized_offset)
yield offset
# Look for new offsets within the updated seed.
curr_seed = mask.crop_and_pad(seed, offset, model.pred_mask_size[::-1])
todos = sorted(
movement.get_scored_move_offsets(
model.deltas[::-1],
curr_seed[0, ..., 0],
threshold=logit(FLAGS.threshold)), reverse=True)
queue.extend((x[2] + offset[0],
x[1] + offset[1],
x[0] + offset[2]) for _, x in todos)
def get_example(load_example, eval_tracker, model, get_offsets):
"""Generates individual training examples.
Args:
load_example: callable returning a tuple of image and label ndarrays
as well as the seed coordinate and volume name of the example
eval_tracker: EvalTracker object
model: FFNModel object
get_offsets: iterable of (x, y, z) offsets to investigate within the
training patch
Yields:
tuple of:
seed array, shape [1, z, y, x, 1]
image array, shape [1, z, y, x, 1]
label array, shape [1, z, y, x, 1]
"""
seed_shape = train_canvas_size(model).tolist()[::-1]
while True:
full_patches, full_labels, loss_weights, coord, volname = load_example()
# Always start with a clean seed.
seed = logit(mask.make_seed(seed_shape, 1, pad=FLAGS.seed_pad))
for off in get_offsets(model, seed):
predicted = mask.crop_and_pad(seed, off, model.input_seed_size[::-1])
patches = mask.crop_and_pad(full_patches, off, model.input_image_size[::-1])
labels = mask.crop_and_pad(full_labels, off, model.pred_mask_size[::-1])
weights = mask.crop_and_pad(loss_weights, off, model.pred_mask_size[::-1])
# Necessary, since the caller is going to update the array and these
# changes need to be visible in the following iterations.
assert predicted.base is seed
yield predicted, patches, labels, weights
# eval_tracker.add_patch(
# full_labels, seed, loss_weights, coord, volname, full_patches)
eval_tracker.add_patch_v2(
full_labels, seed, loss_weights, coord, volname, full_patches)
def get_batch(load_example, eval_tracker, model, batch_size, get_offsets):
"""Generates batches of training examples.
Args:
load_example: callable returning a tuple of image and label ndarrays
as well as the seed coordinate and volume name of the example
eval_tracker: EvalTracker object
model: FFNModel object
batch_size: desidred batch size
get_offsets: iterable of (x, y, z) offsets to investigate within the
training patch
Yields:
tuple of:
seed array, shape [b, z, y, x, 1]
image array, shape [b, z, y, x, 1]
label array, shape [b, z, y, x, 1]
where 'b' is the batch_size.
"""
def _batch(iterable):
for batch_vals in iterable:
# `batch_vals` is sequence of `batch_size` tuples returned by the
# `get_example` generator, to which we apply the following transformation:
# [(a0, b0), (a1, b1), .. (an, bn)] -> [(a0, a1, .., an),
# (b0, b1, .., bn)]
# (where n is the batch size) to get a sequence, each element of which
# represents a batch of values of a given type (e.g., seed, image, etc.)
yield zip(*batch_vals)
# Create a separate generator for every element in the batch. This generator
# will automatically advance to a different training example once the allowed
# moves for the current location are exhausted.
for seeds, patches, labels, weights in _batch(six.moves.zip(
*[get_example(load_example, eval_tracker, model, get_offsets) for _
in range(batch_size)])):
batched_seeds = np.concatenate(seeds)
yield (batched_seeds, np.concatenate(patches), np.concatenate(labels),
np.concatenate(weights))
# batched_seed is updated in place with new predictions by the code
# calling get_batch. Here we distribute these updated predictions back
# to the buffer of every generator.
for i in range(batch_size):
seeds[i][:] = batched_seeds[i, ...]
def save_flags():
gfile.makedirs(FLAGS.train_dir)
with gfile.GFile(os.path.join(FLAGS.train_dir,
'flags.%d' % time.time()), 'w') as f:
for mod, flag_list in FLAGS.flags_by_module_dict().items():
if (mod.startswith('google3.research.neuromancer.tensorflow') or
mod.startswith('/')):
for flag in flag_list:
f.write('%s\n' % flag.serialize())
def train_ffn(model_cls, **model_kwargs):
hvd.init()
logging.info('Rank: %d %d' % (hvd.rank(), rank))
with tf.Graph().as_default():
# The constructor might define TF ops/placeholders, so it is important
# that the FFN is instantiated within the current context.
model = model_cls(**model_kwargs)
eval_shape_zyx = train_eval_size(model).tolist()[::-1]
eval_tracker = EvalTracker(eval_shape_zyx)
load_data_ops = h5_distributed_dataset(model, queue_batch=1)
print(load_data_ops)
prepare_ffn(model)
merge_summaries_op = tf.compat.v1.summary.merge_all()
if FLAGS.task == 0:
save_flags()
hooks = [
# Horovod: BroadcastGlobalVariablesHook broadcasts initial variable states
# from rank 0 to all other processes. This is necessary to ensure consistent
# initialization of all workers when training is started with random weights
# or restored from a checkpoint.
hvd.BroadcastGlobalVariablesHook(0),
# Horovod: adjust number of steps based on number of GPUs.
tf.estimator.StopAtStepHook(last_step=FLAGS.max_steps // hvd.size()),
]
config = tf.compat.v1.ConfigProto()
config.gpu_options.allow_growth = True
config.gpu_options.visible_device_list = str(hvd.local_rank())
checkpoint_dir = FLAGS.train_dir if hvd.rank() == 0 else None
summary_writer = None
saver = tf.compat.v1.train.Saver(max_to_keep=None, keep_checkpoint_every_n_hours=24)
scaffold = tf.compat.v1.train.Scaffold(saver=saver)
# model.global_step = None
# logging.warning('GLOBAL STEP %s %s', model.global_step, model.global_step.dtype.base_dtype.is_integer)
# logging.warning('GLOBAL_STEP assert')
# tf.compat.v1.train.training_utils.assert_global_step(model.global_step)
# tf.train.training_utils.assert_global_step(model.global_step)
# global_step = tf.Variable(0, name='global_step', trainable=False)
# g = ops.get_default_graph()
# logging.warning('GRAPH %s', g)
# glst = g.get_collection(ops.GraphKeys.GLOBAL_STEP)
# logging.warning('GRAPH GLOBAL%s', glst)
with tf.compat.v1.train.MonitoredTrainingSession(
master=FLAGS.master,
is_chief=(FLAGS.task == 0),
checkpoint_dir=checkpoint_dir,
hooks=hooks,
save_checkpoint_secs=300,
save_summaries_steps=None,
config=config,
scaffold=scaffold) as sess:
eval_tracker.sess = sess
step = int(sess.run(model.global_step))
if FLAGS.task > 0:
# To avoid early instabilities when using multiple replicas, we use
# a launch schedule where new replicas are brought online gradually.
logging.info('Delaying replica start.')
while step < FLAGS.replica_step_delay * FLAGS.task:
time.sleep(5.0)
if rank == 0:
summary_writer = tf.compat.v1.summary.FileWriterCache.get(FLAGS.train_dir)
summary_writer.add_session_log(
tf.compat.v1.summary.SessionLog(status=tf.compat.v1.summary.SessionLog.START), step)
fov_shifts = list(model.shifts) # x, y, z
if FLAGS.shuffle_moves:
random.shuffle(fov_shifts)
policy_map = {
'fixed': partial(fixed_offsets, fov_shifts=fov_shifts),
'max_pred_moves': max_pred_offsets
}
batch_it = get_batch(lambda: sess.run(load_data_ops),
eval_tracker, model, FLAGS.batch_size,
# eval_tracker, model, 1,
policy_map[FLAGS.fov_policy])
t_last = time.time()
while not sess.should_stop() and step < FLAGS.max_steps:
# Run summaries periodically.
t_curr = time.time()
if t_curr - t_last > FLAGS.summary_rate_secs and FLAGS.task == 0:
summ_op = merge_summaries_op
t_last = t_curr
else:
summ_op = None
seed, patches, labels, weights = next(batch_it)
updated_seed, step, summ = run_training_step(
sess, model, summ_op,
feed_dict={
model.loss_weights: weights,
model.labels: labels,
model.input_patches: patches,
model.input_seed: seed,
})
# Save prediction results in the original seed array so that
# they can be used in subsequent steps.
mask.update_at(seed, (0, 0, 0), updated_seed)
# Record summaries.
if hvd.rank() == 0 and summ is not None:
logging.info('Saving summaries.')
summ = tf.compat.v1.Summary.FromString(summ)
# Compute a loss over the whole training patch (i.e. more than a
# single-step field of view of the network). This quantifies the
# quality of the final object mask.
summ.value.extend(eval_tracker.get_summaries())
eval_tracker.reset()
assert summary_writer is not None
summary_writer.add_summary(summ, step)
if summary_writer is not None:
summary_writer.flush()
def main(argv=()):
del argv # Unused.
model_class = import_symbol(FLAGS.model_name)
# Multiply the task number by a value large enough that tasks starting at a
# similar time cannot end up with the same seed.
seed = int(time.time() + FLAGS.task * 3600 * 24)
logging.info('Random seed: %r', seed)
random.seed(seed)
train_ffn(model_class, batch_size=FLAGS.batch_size,
**json.loads(FLAGS.model_args))
if __name__ == '__main__':
flags.mark_flag_as_required('train_coords')
flags.mark_flag_as_required('data_volumes')
flags.mark_flag_as_required('label_volumes')
flags.mark_flag_as_required('model_name')
flags.mark_flag_as_required('model_args')
app.run(main)