forked from google/ffn
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathrun_inference_at.py
104 lines (82 loc) · 3.3 KB
/
run_inference_at.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
#!/usr/bin/env python
# Copyright 2017 Google Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Runs FFN inference within a dense bounding box.
Inference is performed within a single process.
"""
import os
import time
from google.protobuf import text_format
from absl import app
from absl import flags
gfile = tf.io.gfile
from ffn.utils import bounding_box_pb2
from ffn.inference import inference
from ffn.inference import inference_flags
from ffn.inference import storage
from ffn.inference import seed
from scipy.special import expit
import itertools
import numpy as np
FLAGS = flags.FLAGS
flags.DEFINE_string('bounding_box', None,
'BoundingBox proto in text format defining the area '
'to segmented.')
flags.DEFINE_list('start_pos', None, 'start pos in z,y,x')
# class dummyPolicy(seed.BaseSeedPolicy):
# def __init__(self, canvas, start_pos, **kwargs):
# super(dummyPolicy).__init__(self, canvas, **kwargs)
# self.start_pos = s
# def __next__(self):
# for i in [self.start_pos]:
# return i
def main(unused_argv):
request = inference_flags.request_from_flags()
if not gfile.exists(request.segmentation_output_dir):
gfile.makedirs(request.segmentation_output_dir)
bbox = bounding_box_pb2.BoundingBox()
text_format.Parse(FLAGS.bounding_box, bbox)
# start_pos = tuple([int(i) for i in FLAGS.start_pos])
runner = inference.Runner()
corner = (bbox.start.z, bbox.start.y, bbox.start.x)
subvol_size = (bbox.size.z, bbox.size.y, bbox.size.x)
start_pos = tuple([int(i) for i in FLAGS.start_pos])
seg_path = storage.segmentation_path(
request.segmentation_output_dir, corner)
prob_path = storage.object_prob_path(
request.segmentation_output_dir, corner)
runner.start(request)
canvas, alignment = runner.make_canvas(corner, subvol_size)
num_iter = canvas.segment_at(start_pos)
print('>>', num_iter)
sel = [slice(max(s, 0), e + 1) for s, e in zip(
canvas._min_pos - canvas._pred_size // 2,
canvas._max_pos + canvas._pred_size // 2)]
mask = canvas.seed[sel] >= canvas.options.segment_threshold
raw_segmented_voxels = np.sum(mask)
mask &= canvas.segmentation[sel] <= 0
actual_segmented_voxels = np.sum(mask)
canvas._max_id += 1
canvas.segmentation[sel][mask] = canvas._max_id
canvas.seg_prob[sel][mask] = storage.quantize_probability(
expit(canvas.seed[sel][mask]))
runner.save_segmentation(canvas, alignment, seg_path, prob_path)
runner.run((bbox.start.z, bbox.start.y, bbox.start.x),
(bbox.size.z, bbox.size.y, bbox.size.x))
counter_path = os.path.join(request.segmentation_output_dir, 'counters.txt')
if not gfile.exists(counter_path):
runner.counters.dump(counter_path)
if __name__ == '__main__':
app.run(main)