forked from boschresearch/pq-wolfSSL
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathINSTALL
138 lines (101 loc) · 5.48 KB
/
INSTALL
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
0. Building on *nix from git repository
Run the autogen script to generate configure, then proceed to step 1.
Prerequisites: You'll need autoconf, automake and libtool installed.
$ ./autogen.sh
1. Building on *nix from a release
$ ./configure
$ make
$ make check # (optional, but highly recommended)
$ sudo make install
2. Building on iOS
Use on the xcode project in IDE/iOS/wolfssl.xcodeproj
There is a README in IDE/iOS with more information
3. Building for Apple ARM64
When building for an Apple ARM64 platform, ensure the host CPU type is detected as "aarch64" during configure, if not, pass --host=aarch64-apple-darwin to configure.
4. Building on Windows
Use the 32bit Visual Studio Solution wolfssl.sln
For a 64bit solution please use wolfssl64.sln
5. Building with IAR
Please see the README in IDE/IAR-EWARM for detailed instructions
6. Building with Keil
Please see the Keil Projects in IDE/MDK5-ARM/Projects
7. Building with Microchip tools
Please see the README in mplabx
8. Building with Freescale MQX
Please see the README in mqx
9. Building with Rowley CrossWorks for ARM
Use the CrossWorks project in IDE/ROWLEY-CROSSWORKS-ARM/wolfssl.hzp
There is a README.md in IDE/ROWLEY-CROSSWORKS-ARM with more information
10. Building with Arduino
Use the script IDE/ARDUINO/wolfssl-arduino.sh to reformat the wolfSSL
library for compatibility with the Arduino IDE. There is a README.md in
IDE/ARDUINO for detailed instructions.
11. Building for Android with Visual Studio 2017
Please see the README in IDE/VS-ARM.
Use the Visual Studio solution IDE/VS-ARM/wolfssl.sln.
12. Building for Yocto Project or OpenEmbedded
Please see the README in the "meta-wolfssl" repository. This repository
holds wolfSSL's Yocto and OpenEmbedded layer, which contains recipes
for wolfSSL, wolfSSH, wolfMQTT, wolfTPM, wolfCrypt examples, and OSS
project bbappend files.
https://github.com/wolfssl/meta-wolfssl
The wolfSSL recipe can also be found in the OpenEmbedded
"meta-openembedded/meta-networking/recipes-connectivity" layer:
https://github.com/openembedded/meta-openembedded
13. Porting to a new platform
Please see section 2.4 in the manual:
http://www.wolfssl.com/yaSSL/Docs-cyassl-manual-2-building-cyassl.html
14. Building with CMake
Note: Primary development uses automake (./configure). The support for CMake
is still under development.
For configuring wolfssl using CMake, we recommend downloading the CMake
GUI (https://cmake.org/download/). This tool allows you to see all of
wolfssl's configuration variables, set them, and view their descriptions.
Looking at the GUI or CMakeCache.txt (generated after running cmake once) is
the best way to find out what configuration options are available and what
they do. You can also invoke CMake from the GUI, which is described in the
Windows instructions below. For Unix-based systems, we describe the command
line work flow. Regardless of your chosen workflow, cmake will generate
a header options.h in the wolfssl directory that contains the options used
to configure the build.
Unix-based Platforms
---
1) Navigate to the wolfssl root directory containing "CMakeLists.txt".
2) Create a directory called "build" and change into it. This is where
CMake will store build files.
3) Run `cmake ..` to generate the target build files (e.g. UNIX Makefiles).
To enable or disable features, set them using -D<option>=[yes/no]. For
example, to disable TLS 1.3 support, run cmake .. -DWOLFSSL_TLS13=no
(autoconf equivalent: ./configure --disable-tls13) To enable DSA, run
cmake .. -DWOLFSSL_DSA=yes (autoconf equivalent: ./configure
--enable-dsa). Again, you can find a list of these options and their
descriptions either using the CMake GUI or by looking at CMakeCache.txt.
5) The build directory should now contain the generated build files. Build
with `cmake --build .`. Under the hood, this runs the target build tool
(by default, make). You can also invoke the target build tool directly
(e.g. make).
To build with debugging use: `cmake .. -DCMAKE_BUILD_TYPE=Debug`.
Windows (Visual Studio)
---
1) Go to this page, download the appropriate Windows installer, and install
to get the CMake GUI: https://cmake.org/download/ Native CMake support in
Visual Studio 16 2019 (and possibly older versions) has proven buggy. We
recommend using the CMake GUI in concert with Visual Studio, as described
in these steps.
2) Open CMake.
3) Where is the soure code: <root directory of wolfssl containing
CMakeLists.txt>
4) Where to build the binaries: <build directory, e.g. wolfssl/build>
5) Hit Configure. CMake runs the code in CMakeLists.txt and builds up an
internal representation of the project.
6) Hit Generate. CMake generates the build files. For Windows, this will
be Visual Studio project (.vcxproj) and solution (.sln) files.
7) Open Visual Studio and select "Open a project or solution".
8) Navigate to the build directory and select wolfssl.sln to load the
project.
Windows (command line)
---
1) Open Command Prompt
2) Run the Visual Studio batch to setup command line variables, e.g. C:\Program Files (x86)\Microsoft Visual
Studio\2017\Community\VC\Auxiliary\Build\vcvars64.bat
3) Follow steps in "Unix-based Platforms" above.