forked from TheAlgorithms/JavaScript
-
Notifications
You must be signed in to change notification settings - Fork 0
/
EditDistance.js
54 lines (43 loc) · 1.31 KB
/
EditDistance.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
/*
Wikipedia -> https://en.wikipedia.org/wiki/Edit_distance
Q. -> Given two strings `word1` and `word2`. You can perform these operations on any of the string to make both strings similar.
- Insert
- Remove
- Replace
Find the minimum operation cost required to make both same. Each operation cost is 1.
Algorithm details ->
time complexity - O(n*m)
space complexity - O(n*m)
*/
const minimumEditDistance = (word1, word2) => {
const n = word1.length
const m = word2.length
const dp = new Array(m + 1).fill(0).map((item) => [])
/*
fill dp matrix with default values -
- first row is filled considering no elements in word2.
- first column filled considering no elements in word1.
*/
for (let i = 0; i < n + 1; i++) {
dp[0][i] = i
}
for (let i = 0; i < m + 1; i++) {
dp[i][0] = i
}
/*
indexing is 1 based for dp matrix as we defined some known values at first row and first column/
*/
for (let i = 1; i < m + 1; i++) {
for (let j = 1; j < n + 1; j++) {
const letter1 = word1[j - 1]
const letter2 = word2[i - 1]
if (letter1 === letter2) {
dp[i][j] = dp[i - 1][j - 1]
} else {
dp[i][j] = Math.min(dp[i - 1][j], dp[i - 1][j - 1], dp[i][j - 1]) + 1
}
}
}
return dp[m][n]
}
export { minimumEditDistance }