-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDutchDataAnalysis.py
165 lines (116 loc) · 4.44 KB
/
DutchDataAnalysis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
#%%
# method: import dataset
def parse_dat_file(path):
with open(path, 'r') as file:
data = file.readlines()
data = [list(map(int, line.split())) for line in data]
print(data)
return data
#%%
import itertools
advice_path = r'DutchSchoolDataset\CompletedDataset\klas12b-advice.dat'
# this dataset contains the grades given to students
advice_data = parse_dat_file(advice_path)
advice_data = list(itertools.chain(*advice_data))
print(advice_data)
# %%
import matplotlib.pyplot as plt
plt.hist(advice_data, edgecolor='black')
plt.title('Histogram of Advice Data')
plt.xlabel('Advice Score')
plt.ylabel('Frequency')
plt.show()
# %%
student_ids = [i for i in range(1, advice_data.__len__() + 1)]
plt.bar(student_ids, advice_data, color='green', edgecolor='black', width=0.5)
plt.title('Advice Data for each Students')
plt.xlabel('Student ID')
plt.ylabel('Advice Score')
# %%
net1_path = r'DutchSchoolDataset\CompletedDataset\klas12b-net-1.dat'
net2_path = r'DutchSchoolDataset\CompletedDataset\klas12b-net-2.dat'
net3_path = r'DutchSchoolDataset\CompletedDataset\klas12b-net-3.dat'
net4_path = r'DutchSchoolDataset\CompletedDataset\klas12b-net-4.dat'
#%%
net1_data = parse_dat_file(net1_path)
net2_data = parse_dat_file(net2_path)
net3_data = parse_dat_file(net3_path)
net4_data = parse_dat_file(net4_path)
print(net2_data)
# %%
import networkx as nx
import numpy as np
import csv
#%%
def visualize_network(data):
adj_matrix = np.array(data)
G = nx.from_numpy_array(adj_matrix)
pos = nx.spring_layout(G)
edges = G.edges(data=True)
# Determine the weights and styles for edges
weights = [edge[2]['weight'] for edge in edges]
styles = ['dashed' if edge[2]['weight'] == 9 else 'solid' for edge in edges]
# Draw the graph with different edge styles and adjust the width for dashed lines
for edge, style in zip(edges, styles):
# width = edge[2]['weight'] if style == 'solid' else edge[2]['weight'] * 0.01
color = 'red' if style == 'dashed' else 'gray'
color = 'black' if edge[2]['weight'] == 10 else color
nx.draw_networkx_edges(G, pos, edgelist=[edge], style=style, edge_color=color)
nx.draw_networkx_nodes(G, pos, node_color='lightblue')
nx.draw_networkx_labels(G, pos)
plt.title('Graph Visualization from Adjacency Matrix with Weights')
plt.show()
# %%
visualize_network(net1_data)
visualize_network(net2_data)
visualize_network(net3_data)
visualize_network(net4_data)
# %%
# loading data from files
demo_path = r'DutchSchoolDataset\CompletedDataset\klas12b-demographics.dat'
demo_data = parse_dat_file(demo_path)
delin_path = r'DutchSchoolDataset\CompletedDataset\klas12b-delinquency.dat'
delin_data = parse_dat_file(delin_path)
alcolhol_path = r'DutchSchoolDataset\CompletedDataset\klas12b-alcohol.dat'
alcohol_data = parse_dat_file(alcolhol_path)
print(demo_data, delin_data)
# %%
import matplotlib.colors as mcolors
def visualize_temporal_attributes_network(adj_matrix, attributes_table):
adj_matrix = np.array(adj_matrix)
G = nx.from_numpy_array(adj_matrix)
pos = nx.spring_layout(G)
cmap = plt.get_cmap('viridis', 5)
norm = mcolors.BoundaryNorm(boundaries=[0.5, 1.5, 2.5, 3.5, 4.5, 5.5], ncolors=5)
for i, attributes in enumerate(attributes_table):
plt.figure()
node_colors = [cmap(norm(attr)) for attr in attributes]
nx.draw_networkx_nodes(G, pos, node_color=node_colors, cmap=cmap)
nx.draw_networkx_edges(G, pos)
nx.draw_networkx_labels(G, pos)
plt.title(f'Network Visualization at Time {i+1}')
sm = plt.cm.ScalarMappable(cmap=cmap, norm=norm)
sm.set_array([])
plt.colorbar(sm, ticks=[1, 2, 3, 4, 5], label='Node Attributes')
plt.show()
# %%
delin_data = np.array(delin_data)
delin_data = np.transpose(delin_data)
print(delin_data, delin_data.shape)
visualize_temporal_attributes_network(net1_data, delin_data)
# %%
import csv
def save_to_csv(data, filename):
with open(filename, 'w', newline='') as file:
writer = csv.writer(file)
writer.writerows(data)
# Example usage:
save_to_csv(delin_data, 'delin_data.csv')
save_to_csv(net1_data, 'net1_data.csv')
save_to_csv(net2_data, 'net2_data.csv')
save_to_csv(net3_data, 'net3_data.csv')
save_to_csv(net4_data, 'net4_data.csv')
save_to_csv(demo_data, 'demo_data.csv')
save_to_csv([advice_data], 'advice_data.csv')
save_to_csv(alcohol_data, 'alcohol_data.csv')
# %%