forked from quartiq/bscan_spi_bitstreams
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlattice_bscan_spi.py
271 lines (230 loc) · 9.85 KB
/
lattice_bscan_spi.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
#!/usr/bin/python3
from nmigen import *
from nmigen.lib.cdc import FFSynchronizer
from nmigen.lib.io import Pin
from nmigen.build import *
from nmigen.vendor.lattice_ecp5 import *
"""This nMigen script produces proxy bitstream to allow programming SPI flashes
behind FPGAs. It was created based on ./xilinx_bscan_spi.py.
Currently, bitstream binaries have been built with this script on the following
platforms:
* Lattice ECP5
https://github.com/m-labs/nmigen
"""
def _wire_layout():
return [
("sel" , 1),
("shift" , 1),
("capture" , 1),
("tck" , 1),
("tdi" , 1),
("tdo" , 1),
]
class JTAGtoSPI(Elaboratable):
def __init__(self, *, bits=32, spi_pins=None, **kwargs):
self._bits = bits
self._spi_pins = spi_pins
self.jtag = Record(_wire_layout())
self.cs_n = Pin(1, "oe")
self.clk = Pin(1, "oe")
self.mosi = Pin(1, "oe")
self.miso = Pin(1, "i")
#
self.cs_n.o.reset = 1
self.mosi.o.reset_less = True
self.jtag_sel1_capture = Signal() # JTAG chain 1 is selected & in Capture-DR state?
self.jtag_sel1_shift = Signal() # JTAG chain 1 is selected & in Shift-DR state?
# For JTAGF/JTAGG
if set(kwargs).intersection(["jtagf", "jtagg"]):
if kwargs.get("jtagf"):
self._jtagf = True
elif kwargs.get("jtagg"):
self._jtagg = True
else:
raise KeyError("Can't use JTAGF and JTAGG at the same time")
def _detect_jtag_state(self, module):
# JTAGF / JTAGG
if True in [hasattr(self, t) for t in ["_jtagf", "_jtagg"]]:
# Add a JTAGG module to expose internal JTAG signals to FPGA
if hasattr(self, "_jtagf"):
jtag_name = "JTAGF"
elif hasattr(self, "_jtagg"):
jtag_name = "JTAGG"
jtag_sel1_capture_or_shift = Signal()
jtag_rti1 = Signal()
jtag_rst_n = Signal()
module.submodules += Instance(jtag_name,
i_JTDO1=self.jtag.tdo,
o_JTDI=self.jtag.tdi,
o_JTCK=self.jtag.tck,
o_JRTI1=jtag_rti1,
o_JRSTN=jtag_rst_n,
o_JSHIFT=self.jtag.shift,
o_JCE1=jtag_sel1_capture_or_shift)
# Detect that when chain 1 is selected, whether or not TAP is in Capture-DR or Shift-DR state
module.d.comb += [
self.jtag_sel1_capture.eq(jtag_sel1_capture_or_shift & ~self.jtag.shift),
self.jtag_sel1_shift.eq(jtag_sel1_capture_or_shift & self.jtag.shift)
]
# Detect whether or not chain 1 is selected:
# Selection happens right after the TRST pin is deasserted,
# i.e. TAP just left Test-Logic-Reset state and is entering Run-Test/Idle state;
# Thus, when TAP enters RTI state, if JRTI1 is high,
# it is implied chain 1 is selected until TAP enters TLR state again
with module.FSM():
with module.State("IDLE"):
with module.If(~jtag_rst_n):
module.d.sync += self.jtag.sel.eq(0)
module.next = "TLRST"
with module.State("TLRST"):
with module.If(~self.jtag.sel):
module.d.sync += self.jtag.sel.eq(jtag_rti1)
with module.Else():
module.next = "IDLE"
def elaborate(self, platform):
m = Module()
bits = Signal(self._bits, reset_less=True)
head = Signal(range(len(bits)), reset=len(bits)-1)
m.domains.sync = cd_sync = ClockDomain()
if self._spi_pins is not None:
m.submodules += [
platform.get_tristate(self.cs_n, self._spi_pins.cs_n, None, False),
platform.get_tristate(self.mosi, self._spi_pins.mosi, None, False),
platform.get_input(self.miso, self._spi_pins.miso, None, False)
]
m.d.comb += [
self._spi_pins.wp.eq(1),
self._spi_pins.hold.eq(1)
]
self._detect_jtag_state(m)
# For simulation purpose using no Pins:
else:
m.d.comb += [
self.jtag_sel1_capture.eq(self.jtag.sel & self.jtag.capture),
self.jtag_sel1_shift.eq(self.jtag.sel & self.jtag.shift)
]
m.d.comb += [
cd_sync.rst.eq(self.jtag_sel1_capture),
cd_sync.clk.eq(self.jtag.tck),
self.cs_n.oe.eq(self.jtag.sel),
self.clk.oe.eq(self.jtag.sel),
self.mosi.oe.eq(self.jtag.sel),
self.jtag.tdo.eq(self.miso.i),
# Positive edge: JTAG TAP outputs; SPI device gets input from FPGA
# Negative edge: JTAG TAP gets input; SPI device outputs to FPGA
self.clk.o.eq(~self.jtag.tck),
]
# Latency calculation (in half cycles):
# 0 (falling TCK, rising CLK):
# JTAG adapter: set TDI
# 1 (rising TCK, falling CLK):
# JTAG2SPI: sample TDI -> set MOSI
# SPI: set MISO
# 2 (falling TCK, rising CLK):
# SPI: sample MOSI
# JTAG2SPI (BSCAN primitive): sample MISO -> set TDO
# 3 (rising TCK, falling CLK):
# JTAG adapter: sample TDO
with m.FSM() as fsm:
with m.State("IDLE"):
with m.If(self.jtag_sel1_shift & self.jtag.tdi):
m.next = "HEAD"
with m.State("HEAD"):
m.d.sync += [
bits.eq(Cat(self.jtag.tdi, bits)),
head.eq(head - 1)
]
with m.If(head == 0):
m.next = "XFER"
with m.State("XFER"):
m.d.sync += bits.eq(bits - 1)
with m.If(bits == 0):
m.next = "IDLE"
m.d.comb += [
self.mosi.o.eq(self.jtag.tdi),
self.cs_n.o.eq(~fsm.ongoing("XFER"))
]
return m
class LatticeECP5(Elaboratable):
toolchain="Trellis"
def elaborate(self, platform):
m = Module()
io_spiflash = platform.request("spi_flash_1x", dir={'cs_n':'-',
'mosi':'-',
"miso":'-'})
m.submodules.j2s = j2s = JTAGtoSPI(spi_pins=io_spiflash, jtagg=True)
# Add a USRMCLK module to use a user clock as MCLK
# "The ECP5 and ECP5-5G devices provide a solution for users
# to choose any user clock as MCLK under this scenario
# by instantiating USRMCLK macro in your Verilog or VHDL."
# (see Section 6.1.2 of FPGA-TN-02039-1.7,
# "ECP5 and ECP5-5G sysCONFIG Usage Guide Technical Note")
m.submodules += Instance("USRMCLK",
i_USRMCLKI=j2s.clk,
i_USRMCLKTS=0)
# For some reason, the clk100 must be requested and used to drive a domain in the design
m.domains.clk100 = cd_clk100 = ClockDomain(reset_less=True)
m.d.comb += cd_clk100.clk.eq(platform.request("clk100").i)
return m
class LatticeECP5BscanSpi(LatticeECP5Platform):
def make_spi():
io = []
io_1x = [
Attrs(IO_STANDARD="LVCMOS33"),
Subsignal("cs_n", Pins("R2", dir="o")),
Subsignal("mosi", Pins("W2", dir="o", assert_width=1)),
Subsignal("miso", Pins("V2", dir="i", assert_width=1)),
Subsignal("wp", Pins("Y2", dir="o", assert_width=1)),
Subsignal("hold", Pins("W1", dir="o", assert_width=1))
]
io.append(Resource.family(0, default_name="spi_flash", ios=io_1x,
name_suffix="1x"))
return io
def make_clk():
return (
Resource("clk100", 0, DiffPairs("P3", "P4", dir="i"),
Clock(100e6), Attrs(IO_TYPE="LVDS"))
)
device = "LFE5UM-45F"
package = "BG381"
speed = "8"
resources = [*make_spi(), make_clk()]
connectors = []
top_class = LatticeECP5
def __init__(self, toolchain="Trellis"):
LatticeECP5Platform.__init__(self, toolchain=toolchain)
class LatticeBscanSpi:
targets = {
"LFE5UM-45F": LatticeECP5BscanSpi
}
def __new__(cls, target, *args, **kwargs):
newcls = cls.targets[target]
self = newcls.__new__(newcls, *args, **kwargs)
newcls.__init__(self, *args, **kwargs)
return self
@classmethod
def make(cls, target, errors=False):
Top = cls.targets[target].top_class
platform = cls(target, Top.toolchain)
top = Top(platform)
name = "bscan_spi_{}".format(target.lower().replace("-",""))
try:
platform.build(top, name=name)
except Exception as e:
print(("ERROR: lattice_bscan_spi build failed for {}: {}")
.format(target, e))
if errors:
raise
if __name__ == "__main__":
import argparse
import multiprocessing
p = argparse.ArgumentParser(description="build bscan_spi bitstreams "
"for openocd jtagspi flash driver")
p.add_argument("device", nargs="*",
default=sorted(list(LatticeBscanSpi.targets)),
help="build for these devices (default: %(default)s)")
p.add_argument("-p", "--parallel", default=1, type=int,
help="number of parallel builds (default: %(default)s)")
args = p.parse_args()
pool = multiprocessing.Pool(args.parallel)
pool.map(LatticeBscanSpi.make, args.device, chunksize=1)