forked from NVIDIA-AI-IOT/deepstream_python_apps
-
Notifications
You must be signed in to change notification settings - Fork 0
/
deepstream-opticalflow.py
378 lines (337 loc) · 13.9 KB
/
deepstream-opticalflow.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
################################################################################
# SPDX-FileCopyrightText: Copyright (c) 2020-2021 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
################################################################################
""" Deepstream optical flow application
"""
import math
import os
from os import path
import sys
sys.path.append('../')
import cv2
import numpy as np
import gi
gi.require_version('Gst', '1.0')
from gi.repository import GObject, Gst
from common.is_aarch_64 import is_aarch64
from common.bus_call import bus_call
import pyds
MAX_DISPLAY_LEN = 64
MUXER_OUTPUT_WIDTH = 1280
MUXER_OUTPUT_HEIGHT = 720
MUXER_BATCH_TIMEOUT_USEC = 3400000
TILED_OUTPUT_WIDTH = 1280
TILED_OUTPUT_HEIGHT = 720
GST_CAPS_FEATURES_NVMM = "memory:NVMM"
def visualize_optical_flowvectors(flow):
"""
Converts the flow u, v vectors into visualization by mapping them into
grey color space
:param flow: flow vectors
:return: bgr image
"""
shape_visual = (flow.shape[0], flow.shape[1], 3)
mag, ang = cv2.cartToPolar(flow[..., 0], flow[..., 1])
hsv = np.full(shape_visual, 255, dtype=np.uint8)
hsv[..., 1] = 255
hsv[..., 0] = ang * 180 / np.pi / 2
hsv[..., 2] = cv2.normalize(mag, None, 0, 255, cv2.NORM_MINMAX)
bgr = cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR)
bgr = 255 - bgr
return bgr
# tiler_sink_pad_buffer_probe will extract metadata received on OSD sink pad
def ofvisual_queue_src_pad_buffer_probe(pad, info, u_data):
got_visual = False
frame_number = 0
gst_buffer = info.get_buffer()
if not gst_buffer:
print("Unable to get GstBuffer ")
return
# Retrieve batch metadata from the gst_buffer
# Note that pyds.gst_buffer_get_nvds_batch_meta() expects the
# C address of gst_buffer as input, which is obtained with hash(gst_buffer)
batch_meta = pyds.gst_buffer_get_nvds_batch_meta(hash(gst_buffer))
l_frame = batch_meta.frame_meta_list
while l_frame is not None:
try:
# Note that l_frame.data needs a cast to pyds.NvDsFrameMeta
# The casting is done by pyds.glist_get_nvds_frame_meta()
# The casting also keeps ownership of the underlying memory
# in the C code, so the Python garbage collector will leave
# it alone.
frame_meta = pyds.NvDsFrameMeta.cast(l_frame.data)
except StopIteration:
break
frame_number = frame_meta.frame_num
l_user = frame_meta.frame_user_meta_list
while l_user is not None:
try:
# Casting l_user.data to pyds.NvDsUserMeta
of_user_meta = pyds.NvDsUserMeta.cast(l_user.data)
except StopIteration:
break
try:
# Casting of_user_meta.user_meta_data to pyds.NvDsOpticalFlowMeta
of_meta = pyds.NvDsOpticalFlowMeta.cast(of_user_meta.user_meta_data)
# Get Flow vectors
flow_vectors = pyds.get_optical_flow_vectors(of_meta)
# Reshape the obtained flow vectors into proper shape
flow_vectors = flow_vectors.reshape(of_meta.rows, of_meta.cols, 2)
# map the flow vectors in HSV color space for visualization
flow_visual = visualize_optical_flowvectors(flow_vectors)
got_visual = True
except StopIteration:
break
try:
l_user = l_user.next
except StopIteration:
break
print("Frame Number=", frame_number)
if got_visual:
cv2.imwrite(folder_name + "/stream_" + str(frame_meta.pad_index)
+ "/frame_" + str(frame_number) + ".jpg", flow_visual)
try:
l_frame = l_frame.next
except StopIteration:
break
return Gst.PadProbeReturn.OK
def cb_newpad(decodebin, decoder_src_pad, data):
print("In cb_newpad\n")
caps = decoder_src_pad.get_current_caps()
gststruct = caps.get_structure(0)
gstname = gststruct.get_name()
source_bin = data
features = caps.get_features(0)
# Need to check if the pad created by the decodebin is for video and not
# audio.
print("gstname=", gstname)
if gstname.find("video") != -1:
# Link the decodebin pad only if decodebin has picked nvidia
# decoder plugin nvdec_*. We do this by checking if the pad caps contain
# NVMM memory features.
print("features=", features)
if features.contains("memory:NVMM"):
# Get the source bin ghost pad
bin_ghost_pad = source_bin.get_static_pad("src")
if not bin_ghost_pad.set_target(decoder_src_pad):
sys.stderr.write("Failed to link decoder src pad to source bin ghost pad\n")
else:
sys.stderr.write(" Error: Decodebin did not pick nvidia decoder plugin.\n")
def decodebin_child_added(child_proxy, Object, name, user_data):
print("Decodebin child added:", name, "\n")
if name.find("decodebin") != -1:
Object.connect("child-added", decodebin_child_added, user_data)
def create_source_bin(index, uri):
print("Creating source bin")
# Create a source GstBin to abstract this bin's content from the rest of the
# pipeline
bin_name = "source-bin-%02d" % index
print(bin_name)
nbin = Gst.Bin.new(bin_name)
if not nbin:
sys.stderr.write(" Unable to create source bin \n")
# Source element for reading from the uri.
# We will use decodebin and let it figure out the container format of the
# stream and the codec and plug the appropriate demux and decode plugins.
uri_decode_bin = Gst.ElementFactory.make("uridecodebin", "uri-decode-bin")
if not uri_decode_bin:
sys.stderr.write(" Unable to create uri decode bin \n")
# We set the input uri to the source element
uri_decode_bin.set_property("uri", uri)
# Connect to the "pad-added" signal of the decodebin which generates a
# callback once a new pad for raw data has beed created by the decodebin
uri_decode_bin.connect("pad-added", cb_newpad, nbin)
uri_decode_bin.connect("child-added", decodebin_child_added, nbin)
# We need to create a ghost pad for the source bin which will act as a proxy
# for the video decoder src pad. The ghost pad will not have a target right
# now. Once the decode bin creates the video decoder and generates the
# cb_newpad callback, we will set the ghost pad target to the video decoder
# src pad.
Gst.Bin.add(nbin, uri_decode_bin)
bin_pad = nbin.add_pad(Gst.GhostPad.new_no_target("src", Gst.PadDirection.SRC))
if not bin_pad:
sys.stderr.write(" Failed to add ghost pad in source bin \n")
return None
return nbin
def main(args):
# Check input arguments
if len(args) < 2:
sys.stderr.write("usage: %s <uri1> [uri2] ... [uriN] <output_folder>\n" % args[0])
sys.exit(1)
number_sources = len(args) - 2
global folder_name
folder_name = args[-1]
if path.exists(folder_name):
sys.stderr.write("The output folder %s already exists. Please remove"
" it first.\n" % folder_name)
sys.exit(1)
os.mkdir(folder_name)
# Standard GStreamer initialization
GObject.threads_init()
Gst.init(None)
# Create gstreamer elements */
# Create Pipeline element that will form a connection of other elements
print("Creating Pipeline \n ")
pipeline = Gst.Pipeline()
if not pipeline:
sys.stderr.write(" Unable to create Pipeline \n")
print("Creating streamux \n ")
# Create nvstreammux instance to form batches from one or more sources.
streammux = Gst.ElementFactory.make("nvstreammux", "Stream-muxer")
if not streammux:
sys.stderr.write(" Unable to create NvStreamMux \n")
pipeline.add(streammux)
for i in range(number_sources):
print("Creating source_bin ", i, " \n ")
uri_name = args[i + 1]
os.mkdir(folder_name + "/stream_" + str(i))
source_bin = create_source_bin(i, uri_name)
if not source_bin:
sys.stderr.write("Unable to create source bin \n")
pipeline.add(source_bin)
padname = "sink_%u" % i
sinkpad = streammux.get_request_pad(padname)
if not sinkpad:
sys.stderr.write("Unable to create sink pad bin \n")
srcpad = source_bin.get_static_pad("src")
if not srcpad:
sys.stderr.write("Unable to create src pad bin \n")
srcpad.link(sinkpad)
print("Creating tiler \n ")
tiler = Gst.ElementFactory.make("nvmultistreamtiler", "nvtiler")
if not tiler:
sys.stderr.write(" Unable to create tiler \n")
print("Creating nv optical flow element \n")
nvof = Gst.ElementFactory.make("nvof", "nvopticalflow")
if not nvof:
sys.stderr.write("Unable to create optical flow \n")
print("Creating nv optical flow visualisation element \n")
nvofvisual = Gst.ElementFactory.make("nvofvisual", "nvopticalflowvisual")
if not nvofvisual:
sys.stderr.write("Unable to create flow visualisation element")
print("Creating queue \n ")
of_queue = Gst.ElementFactory.make("queue", "q_after_of")
if not of_queue:
sys.stderr.write("Unable to create queue \n")
print("Creating queue \n")
ofvisual_queue = Gst.ElementFactory.make("queue", "q_after_ofvisual")
if not ofvisual_queue:
sys.stderr.write("Unable to create queue \n")
print("Creating Queue \n")
queue = Gst.ElementFactory.make("queue", "queue")
if not queue:
sys.stderr.write(" Unable to create queue \n")
print("Creating nvosd \n ")
nvosd = Gst.ElementFactory.make("nvdsosd", "onscreendisplay")
if not nvosd:
sys.stderr.write(" Unable to create nvosd \n")
print("Creating converter 2\n")
nvvidconv2 = Gst.ElementFactory.make("nvvideoconvert", "convertor2")
if not nvvidconv2:
sys.stderr.write(" Unable to create nvvidconv2 \n")
print("Creating capsfilter \n")
capsfilter = Gst.ElementFactory.make("capsfilter", "capsfilter")
if not capsfilter:
sys.stderr.write(" Unable to create capsfilter \n")
caps = Gst.Caps.from_string("video/x-raw, format=I420")
capsfilter.set_property("caps", caps)
print("Creating Encoder \n")
encoder = Gst.ElementFactory.make("avenc_mpeg4", "encoder")
if not encoder:
sys.stderr.write(" Unable to create encoder \n")
encoder.set_property("bitrate", 2000000)
print("Creating Code Parser \n")
codeparser = Gst.ElementFactory.make("mpeg4videoparse", "mpeg4-parser")
if not codeparser:
sys.stderr.write(" Unable to create code parser \n")
print("Creating Container \n")
container = Gst.ElementFactory.make("qtmux", "qtmux")
if not container:
sys.stderr.write(" Unable to create code parser \n")
print("Creating File Sink \n")
sink = Gst.ElementFactory.make("filesink", "filesink")
if not sink:
sys.stderr.write(" Unable to create file sink \n")
sink.set_property("location", "./out.mp4")
sink.set_property("sync", 0)
streammux.set_property('width', 1280)
streammux.set_property('height', 720)
streammux.set_property('batch-size', number_sources)
streammux.set_property('batched-push-timeout', 33333)
streammux.set_property('sync-inputs', 1)
tiler_rows = int(math.sqrt(number_sources))
tiler_columns = int(math.ceil((1.0 * number_sources) / tiler_rows))
tiler.set_property("rows", tiler_rows)
tiler.set_property("columns", tiler_columns)
tiler.set_property("width", TILED_OUTPUT_WIDTH)
tiler.set_property("height", TILED_OUTPUT_HEIGHT)
print("Adding elements to Pipeline \n")
pipeline.add(nvof)
pipeline.add(of_queue)
pipeline.add(nvofvisual)
pipeline.add(ofvisual_queue)
pipeline.add(tiler)
pipeline.add(nvosd)
pipeline.add(queue)
pipeline.add(nvvidconv2)
pipeline.add(capsfilter)
pipeline.add(encoder)
pipeline.add(codeparser)
pipeline.add(container)
pipeline.add(sink)
print("Linking elements in the Pipeline \n")
streammux.link(nvof)
nvof.link(of_queue)
of_queue.link(nvofvisual)
nvofvisual.link(ofvisual_queue)
ofvisual_queue.link(tiler)
tiler.link(nvosd)
nvosd.link(queue)
queue.link(nvvidconv2)
nvvidconv2.link(capsfilter)
capsfilter.link(encoder)
encoder.link(codeparser)
codeparser.link(container)
container.link(sink)
# create an event loop and feed gstreamer bus mesages to it
loop = GObject.MainLoop()
bus = pipeline.get_bus()
bus.add_signal_watch()
bus.connect("message", bus_call, loop)
ofvisual_queue_src_pad = ofvisual_queue.get_static_pad("src")
if not ofvisual_queue_src_pad:
sys.stderr.write(" Unable to get src pad \n")
else:
ofvisual_queue_src_pad.add_probe(Gst.PadProbeType.BUFFER,
ofvisual_queue_src_pad_buffer_probe,
0)
# List the sources
print("Now playing...")
for i, source in enumerate(args[:-1]):
if i != 0:
print(i, ": ", source)
print("Starting pipeline \n")
# start play back and listed to events
pipeline.set_state(Gst.State.PLAYING)
try:
loop.run()
except:
pass
# cleanup
print("Exiting app\n")
pipeline.set_state(Gst.State.NULL)
if __name__ == '__main__':
sys.exit(main(sys.argv))