forked from NVIDIA-AI-IOT/deepstream_python_apps
-
Notifications
You must be signed in to change notification settings - Fork 0
/
ssd_parser.py
161 lines (131 loc) · 5.96 KB
/
ssd_parser.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
################################################################################
# SPDX-FileCopyrightText: Copyright (c) 2020-2021 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
################################################################################
"""
Simple python SSD output parser.
The function `nvds_infer_parse_custom_tf_ssd` should be used.
"""
import sys
import pyds
from nms import cluster_and_fill_detection_output_nms
class BoxSizeParam:
""" Class contaning base element for too small object box deletion. """
def __init__(self, screen_height, screen_width,
min_box_height, min_box_width):
self.screen_height = screen_height
self.screen_width = screen_width
self.min_box_height = min_box_height
self.min_box_width = min_box_width
def is_percentage_sufficiant(self, percentage_height, percentage_width):
""" Return True if detection box dimension is large enough,
False otherwise.
"""
res = self.screen_width * percentage_width > self.min_box_width
res &= self.screen_height * percentage_height > self.min_box_height
return res
class NmsParam:
""" Contains parametter for non maximal suppression algorithm. """
def __init__(self, top_k=20, iou_threshold=0.4):
self.top_k = top_k
self.iou_threshold = iou_threshold
class DetectionParam:
""" Contains the number of classes and their detection threshold. """
def __init__(self, class_nb, threshold):
self.class_nb = class_nb
self.classes_threshold = [threshold] * class_nb
def get_class_threshold(self, index):
""" Get detection value of a class """
return self.classes_threshold[index]
def clip(elm, mini, maxi):
""" Clips a value between mini and maxi."""
return max(min(elm, maxi), mini)
def layer_finder(output_layer_info, name):
""" Return the layer contained in output_layer_info which corresponds
to the given name.
"""
for layer in output_layer_info:
# dataType == 0 <=> dataType == FLOAT
if layer.dataType == 0 and layer.layerName == name:
return layer
return None
def make_nodi(index, layers, detection_param, box_size_param):
""" Creates a NvDsInferObjectDetectionInfo object from one layer of SSD.
Return None if the class Id is invalid, if the detection confidence
is under the threshold or if the width/height of the bounding box is
null/negative.
Return the created NvDsInferObjectDetectionInfo object otherwise.
"""
score_layer, class_layer, box_layer = layers
res = pyds.NvDsInferObjectDetectionInfo()
res.detectionConfidence = pyds.get_detections(score_layer.buffer, index)
res.classId = int(pyds.get_detections(class_layer.buffer, index))
if (
res.classId >= detection_param.class_nb
or res.detectionConfidence < detection_param.get_class_threshold(res.classId)
):
return None
def clip_1d_elm(index2):
""" Clips an element from buff_view between bounds. """
buff_elm = pyds.get_detections(box_layer.buffer, index * 4 + index2)
return clip(buff_elm, 0.0, 1.0)
rect_x1_f = clip_1d_elm(0)
rect_y1_f = clip_1d_elm(1)
rect_x2_f = clip_1d_elm(2)
rect_y2_f = clip_1d_elm(3)
res.left = rect_y1_f
res.top = rect_x1_f
res.width = rect_y2_f - rect_y1_f
res.height = rect_x2_f - rect_x1_f
if not box_size_param.is_percentage_sufficiant(res.height, res.width):
return None
return res
def nvds_infer_parse_custom_tf_ssd(output_layer_info, detection_param, box_size_param,
nms_param=NmsParam()):
""" Get data from output_layer_info and fill object_list
with several NvDsInferObjectDetectionInfo.
Keyword arguments:
- output_layer_info : represents the neural network's output.
(NvDsInferLayerInfo list)
- detection_param : contains per class threshold.
(DetectionParam)
- box_size_param : element containing information to discard boxes
that are too small. (BoxSizeParam)
- nms_param : contains information for performing non maximal
suppression. (NmsParam)
Return:
- Bounding boxes. (NvDsInferObjectDetectionInfo list)
"""
num_detection_layer = layer_finder(output_layer_info, "num_detections")
score_layer = layer_finder(output_layer_info, "detection_scores")
class_layer = layer_finder(output_layer_info, "detection_classes")
box_layer = layer_finder(output_layer_info, "detection_boxes")
if not num_detection_layer or not score_layer or not class_layer or not box_layer:
sys.stderr.write("ERROR: some layers missing in output tensors\n")
return []
num_detection = 0
if num_detection_layer.buffer:
num_detection = int(pyds.get_detections(num_detection_layer.buffer, 0))
num_detection = clip(num_detection, 0, class_layer.dims.d[0])
x3_layers = score_layer, class_layer, box_layer
object_list = []
for i in range(num_detection):
obj = make_nodi(i, x3_layers, detection_param, box_size_param)
if obj:
object_list.append(obj)
if object_list:
object_list = cluster_and_fill_detection_output_nms(object_list, nms_param.top_k,
nms_param.iou_threshold)
return object_list