forked from automl/RNAformer
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinfer_riboformer.py
138 lines (106 loc) · 5.15 KB
/
infer_riboformer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import os
import tqdm
import argparse
import pathlib
import torch
import urllib.request
import logging
import torch.cuda
import numpy as np
import pandas as pd
from RNAformer.model.RNAformer import RiboFormer
from RNAformer.pl_module.datamodule_rna import IGNORE_INDEX, PAD_INDEX
from RNAformer.utils.data.rna import CollatorRNA
from RNAformer.utils.configuration import Config
from eval_predictions import evaluate, print_dict_tables
logger = logging.getLogger(__name__)
class EvalRNAformer():
def __init__(self, model_dir, precision=16, flash_attn=False):
model_dir = pathlib.Path(model_dir)
config = Config(config_file=model_dir / 'config.yml')
state_dict = torch.load(model_dir / 'state_dict.pth')
if precision == 32 or flash_attn == False:
config.trainer.precision = 32
config.RNAformer.precision = 32
config.RNAformer.flash_attn = False
elif precision == 16 or precision == 'fp16':
config.trainer.precision = 16
config.RNAformer.precision = 16
config.RNAformer.flash_attn = True
elif precision == 'bf16':
config.trainer.precision = 'bf16'
config.RNAformer.precision = 'bf16'
config.RNAformer.flash_attn = True
model_config = config.RNAformer
model_config.seq_vocab_size = 5
model_config.max_len = state_dict["seq2mat_embed.src_embed_1.embed_pair_pos.weight"].shape[1]
model = RiboFormer(model_config)
model.load_state_dict(state_dict, strict=True)
model = model.cuda()
if precision == 16 or precision == 'fp16' or precision == 'bf16':
model = model.half()
self.model = model.eval()
self.ignore_index = IGNORE_INDEX
self.pad_index = PAD_INDEX
self.collator = CollatorRNA(self.pad_index, self.ignore_index)
def __call__(self, sequence: str, mean_triual=True):
length = len(sequence)
seq_vocab = ['A', 'C', 'G', 'U', 'N']
seq_stoi = dict(zip(seq_vocab, range(len(seq_vocab))))
int_sequence = list(map(seq_stoi.get, sequence))
input_sample = torch.LongTensor(int_sequence)
input_sample = {'src_seq': input_sample, 'length': torch.LongTensor([len(input_sample)])[0]}
batch = self.collator([input_sample])
with torch.no_grad():
logits, mask = self.model(batch['src_seq'].cuda(), batch['length'].cuda(), infer_mean=True)
sample_logits = logits[0, :length, :length, -1].detach()
# triangle mask
if mean_triual:
low_tr = torch.tril(sample_logits, diagonal=-1)
upp_tr = torch.triu(sample_logits, diagonal=1)
mean_logits = (low_tr.t() + upp_tr) / 2
sample_logits = mean_logits + mean_logits.t()
pred_mat = torch.sigmoid(sample_logits) > 0.5
return pred_mat.cpu().numpy()
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Train RNAformer')
parser.add_argument('-n', '--model_name', type=str, default="ts0_conform_dim256_32bit")
parser.add_argument('-m', '--model_dir', type=str, )
parser.add_argument('-f', '--flash_attn', type=bool, default=False )
parser.add_argument('-p', '--precision', type=int, default=32 )
parser.add_argument('-s', '--save_predictions', type=bool, default=False )
args, unknown_args = parser.parse_known_args()
if args.model_dir is None:
model_dir = f"checkpoints/{args.model_name}"
if not os.path.exists(model_dir):
os.makedirs(model_dir, exist_ok=True)
print("Downloading model checkpoints")
urllib.request.urlretrieve(
f"https://ml.informatik.uni-freiburg.de/research-artifacts/RNAformer/{args.model_name}/config.yml",
f"checkpoints/{args.model_name}/config.yml")
urllib.request.urlretrieve(
f"https://ml.informatik.uni-freiburg.de/research-artifacts/RNAformer/{args.model_name}/state_dict.pth",
f"checkpoints/{args.model_name}/state_dict.pth")
else:
model_dir = args.model_dir
eval_model = EvalRNAformer(model_dir, precision=args.precision, flash_attn=args.flash_attn)
def count_parameters(parameters):
return sum(p.numel() for p in parameters)
print(f"Model size: {count_parameters(eval_model.model.parameters())}")
file = "data/all_test_data.npy"
df = pd.DataFrame(np.load(file, allow_pickle=True).tolist())
# potential test sets: 'bprna_ts0', 'pdb_ts1', 'pdb_ts2', 'pdb_ts3', 'pdb_ts_hard', 'synthetic_test'
data_sets = ['bprna_ts0']
for dataset in data_sets:
print("Evaluating on", dataset)
processed_samples = []
for id, sample in tqdm.tqdm(enumerate(df[df['dataset'] == dataset].to_dict('records'))):
sequence = sample['sequence']
pred_mat = eval_model(sequence, mean_triual=True)
sample['struct_mat'] = pred_mat
processed_samples.append(sample)
result = evaluate(processed_samples)
print_dict_tables(result)
if args.save_predictions:
os.makedirs("predictions", exist_ok=True)
np.save(f"predictions/{args.model_name}.npy", processed_samples)