-
Notifications
You must be signed in to change notification settings - Fork 0
/
process_igor_pro_fiel.py
507 lines (464 loc) · 21.7 KB
/
process_igor_pro_fiel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
#!/usr/bin/python3
import numpy as np
import sys
from matplotlib.widgets import Button
import pandas as pd
from pandas import read_pickle
from scipy import constants as const
from scipy.interpolate import interp1d
#import workingFunctions as wf
from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg, FigureCanvasAgg
import tkinter as Tk
import matplotlib.backends.tkagg as tkagg
import matplotlib._pylab_helpers
import dataToPickle as dtp
import lmfit
from bokeh.plotting import figure, show, ColumnDataSource
from bokeh.io import output_notebook
from bokeh.models import HoverTool
from collections import OrderedDict
from scipy.optimize import curve_fit
import PySimpleGUI as sg
import matplotlib
matplotlib.use('TkAgg')
import matplotlib.pyplot as plt
# from PyQt5 import QtGui
# from PyQt5 import QtCore
# from PyQt5.QtCore import Qt
# plt.switch_backend('Qt5Agg') #### macht segfault hmmmmmmm
sg.SetOptions(auto_size_text = False)
def pklImporter(path):
return
def sliceData(data, xlim = None, ylim = None):
if xlim:
x1 = data.index.values.argmin() if xlim[0] < data.index.values.min() else np.where(data.index.values>=xlim[0])[0][0]
x2 = data.index.values.argmax() if xlim[1] > data.index.values.max() else np.where(data.index.values>=xlim[1])[0][0]
if ylim:
#hier funkt was nicht. Die Columns werden nicht richtig wiedergegeben.
y1 = data.columns.values.argmin() if ylim[0] < data.columns.values.min() else np.where(data.columns.values>=ylim[0])[0][0]
y2 = data.columns.values.argmax() if ylim[1] > data.columns.values.max() else np.where(data.columns.values>=ylim[1])[0][0]
if xlim and ylim:
data = data.iloc[x1:x2,y1:y2]
elif xlim:
data = data.iloc[x1:x2,:]
elif ylim:
data = data.iloc[:,y1:y2]
return data
def reduceByX(data):
'''Integriere Daten entlang einzelnen Energiewerten '''
#return np.add.reduce(data.T
return data.apply(np.sum, axis = 1)
def reduceByY(data):
'''Integriere Entlang Y.'''
#return np.add.reduce(data)
return data.apply(np.sum, axis = 0)
def plotRed(dataSet,info, currentPlot = False):
if currentPlot:
p = currentPlot
else:
p = figure(plot_width=1000, plot_height=600,
tools="pan,box_zoom,reset,save,crosshair,hover,wheel_zoom",
title="",
x_axis_label=dataSet.index.name,
y_axis_label='Counts',
toolbar_location="left"
)
df = dataSet.reset_index()
df.columns = [dataSet.index.name,'Counts']
source = ColumnDataSource.from_df(df)
hover = p.select(dict(type=HoverTool))
hover.tooltips = OrderedDict(info['[Info 1]'].items())
p.line(x='index', y='Counts', source=source, legend=info['[Info 1]']['Spectrum Name'])
return p
buttoncolor = 'lightskyblue'#'lightgoldenrodyellow'
def plotData(data,title = None):
fig = plt.figure()
# cid = fig.canvas.mpl_connect('resize_event', onresize)
global ax
ax = fig.add_subplot(111)
if title:
fig.canvas.set_window_title(title)
else:
fig.canvas.set_window_title('Data_Set')
x,y = data[1].index.values, data[1].columns.values
extent = np.min(x), np.max(x), np.min(y), np.max(y)
im = plt.imshow(data[1].T,extent=extent, origin = 'lower', cmap='hot', aspect = 'auto')
plt.xlabel(data[1].index.name)
plt.ylabel(data[1].columns.name)
plt.colorbar()
plt.tight_layout()
button1pos= plt.axes([0.79, 0.0, 0.1, 0.075]) #posx, posy, width, height in %
button2pos = plt.axes([0.9, 0.0, 0.1, 0.075])
button3pos = plt.axes([0.9, 0.1, 0.1, 0.075])
bcut1 = Button(button1pos, 'Int. X', color=buttoncolor)
bcut2 = Button(button2pos, 'Int. Y', color=buttoncolor)
bcut3 = Button(button3pos, 'Info', color=buttoncolor)
bcut1.on_clicked(lambda event: on_clickX(event, data[1]))
bcut2.on_clicked(lambda event: on_clickY(event, data[1]))
bcut3.on_clicked(lambda event: on_clickInfo(event, data[0]))
button1pos._button = bcut1 #otherwise the butten will be killed by carbagcollector
button2pos._button = bcut2
button3pos._button = bcut3
plt.show()
#im = plt.gcf()
#return im
def on_clickInfo(event,data):
temp = []
dictlist = []
for key, value in data.items():
temp = [key,value]
dictlist.append(temp)
# event = sg.Window('Info'). Layout([[sg.Listbox(values=dictlist,size=(40, 20))],[sg.Cancel()] ]).Read()
# event = sg.Window('Info',auto_size_text=True,font=("Helvetica", 18)). Layout([[sg.Multiline(dictlist,size=(80, 10))],[sg.Cancel()] ]).Read()
event = sg.Window('Info',auto_size_text=True,font=("Helvetica", 18)). Layout([[sg.Multiline([grab_dic(data)],size=(80, 10))],[sg.Cancel()]]).Read()
return event
def grab_dic(data):
#tmp_list = []
info_list = []
for ele in data.values():
if isinstance(ele,dict):
for k, v in ele.items():
info_list.append(k+' : '+v+'\n')
return ' '.join(info_list)
def on_clickY(event, data):
print('Start to Integrate Y')
fig2 = plt.figure()
ax2 = fig2.add_subplot(111)
x_lim = ax.get_xlim()
y_lim = ax.get_ylim()
digis = 3
ax2.set_title('x:%s y:%s' %((round(x_lim[0],digis),round(x_lim[1],digis)), (round(y_lim[0],digis),round(y_lim[1],digis))))
button4pos = plt.axes([0.9, 0.0, 0.1, 0.075])
bcut4 = Button(button4pos, 'Save', color=buttoncolor)
slicedData = sliceData(data, xlim = x_lim, ylim = y_lim)
reducedData = reduceByY(slicedData)
ax2.plot(reducedData, 'ko')
plt.show()
bcut4.on_clicked(lambda event:saveReduceData(event,reducedData))
button4pos._button = bcut4
def on_clickX(event,data):
print('Start to Integrate X')
fig2 = plt.figure()
ax2 = fig2.add_subplot(111)
x_lim = ax.get_xlim()
y_lim = ax.get_ylim()
digis = 3
ax2.set_title('x:%s y:%s' %((round(x_lim[0],digis),round(x_lim[1],digis)), (round(y_lim[0],digis),round(y_lim[1],digis))))
slicedData = sliceData(data, xlim = x_lim, ylim = y_lim)
reducedData = reduceByX(slicedData)
#print(reducedData.values, type(reducedData), len(reducedData))
ax2.plot(reducedData, 'bo')
button3pos = plt.axes([0.9, 0.0, 0.1, 0.075])
bcut3 = Button(button3pos, 'Save', color=buttoncolor)
buttonFitpos = plt.axes([0.9, 0.1, 0.1, 0.075])
buttonFit = Button(buttonFitpos, 'Fit-Panel', color=buttoncolor)
bcut3.on_clicked(lambda event:saveReduceData(event, reducedData))
buttonFit.on_clicked(lambda event:fitPanel(event, ax2, reducedData))
button3pos._button = bcut3 #without this the garbage collector destroyes the button
buttonFitpos._button = buttonFit
figures=[manager.canvas.figure
for manager in matplotlib._pylab_helpers.Gcf.get_all_fig_managers()]
for i in figures:
try:
axies= i.get_axes()
for j in axies:
print(j.get_title())
except:
pass
plt.show()
def fitPanel(event, ax, data):
x_lim = ax.get_xlim()
y_lim = ax.get_ylim()
x_abstand = abs(x_lim[1]-x_lim[0])/len(data)
leftbound, rightbound = x_lim[0], x_lim[1]
leftboundStep = x_lim[0]+abs(x_lim[1]-x_lim[0])*0.05
rightboundStep = x_lim[1]-abs(x_lim[1]-x_lim[0])*0.05
faktor = 1e5 # da es in PySimpleGUI der slider nur die int Werte zurueck gibt
layout = [# ll, lr steht fuer LeftLeft, LeftRight, ...
[sg.Text(r'Left'), \
sg.Slider(key = 'll_slider', change_submits = True, background_color = 'red',\
range=(x_lim[0]*faktor,x_lim[1]*faktor), resolution = 1, orientation='h', size=(34, 20), default_value=leftbound),
sg.Slider(key = 'lr_slider', change_submits = True, background_color = 'red', \
range=(x_lim[0]*faktor,x_lim[1]*faktor),resolution = 1, orientation='h', size=(34, 20), default_value=leftboundStep),\
sg.Spin(data.index,key='ll_spin',size=(10, 20), auto_size_text = True),\
sg.Spin(data.index,key='lr_spin',size=(10, 20), auto_size_text = True)],
[sg.Text(r'Right'), sg.Slider(key = 'rl_slider', change_submits = True, background_color = 'green',\
range=(x_lim[0]*faktor,x_lim[1]*faktor), resolution = x_abstand, orientation='h', size=(34, 20), default_value=rightboundStep),
sg.Slider(key = 'rr_slider', change_submits = True, background_color = 'green',\
range=(x_lim[0]*faktor,x_lim[1]*faktor),resolution = x_abstand, orientation='h', size=(34, 20), default_value=rightbound),
sg.Spin(data.index,key='rl_spin',size=(10, 20), auto_size_text = True),
sg.Spin(data.index,key='rr_spin',size=(10, 20), auto_size_text = True)],
[sg.ReadButton('Fit')],
[sg.ReadButton('Finde Fermi Edge'), sg.Text(r'Fermi edge [eV]'), sg.InputText(size =(10,20), key='fermi_edge'), sg.Text('16%-84% width [eV]'), sg.InputText(size =(10,20), key = 'resolution')] ,
[sg.ReadButton('Fit Fermi Function'), sg.Text(r'E_f:'),sg.InputText(size =(10,20), key = 'E_f', default_text= '16.9'), sg.Text(r'b:'), sg.InputText(size =(10,20), default_text = '20000', key = 'b'),sg.Text(r's:'),sg.InputText(size =(10,20),default_text = '100', key = 's'),sg.Text(r'T:'),sg.InputText(size =(10,20),default_text = '300', key = 'T'),],
[sg.Cancel()], ###E_f,b,s,T):
]
window = sg.Window('Fit Parameter for figure ' + str(plt.gcf().number), grab_anywhere=False,auto_size_text=True)
window.Layout(layout)
window.Finalize()
line1, = ax.plot((leftbound,leftbound),y_lim, color = 'r', marker = '>', alpha=0.5)
line2, = ax.plot((leftboundStep, leftboundStep),y_lim, color = 'r', marker = '<', alpha=0.5)
line3, = ax.plot((rightboundStep, rightboundStep),y_lim, color = 'g', marker = '>', alpha=0.5)
line4, = ax.plot((rightbound, rightbound),y_lim, color = 'g', marker = '<', alpha=0.5)
leftFit = None # Initiate some elements, important for Canceling of fit-panel
rightFit = None
inter_line = None
inter_dot = None
fermi_edge_plot = None
sexteen_plot = None
eigthy4_plot = None
while True:
event, values = window.Read()
line1.set_xdata((values['ll_slider']/faktor,values['ll_slider']/faktor))
line2.set_xdata((values['lr_slider']/faktor,values['lr_slider']/faktor))
line3.set_xdata((values['rl_slider']/faktor,values['rl_slider']/faktor))
line4.set_xdata((values['rr_slider']/faktor,values['rr_slider']/faktor))
window.FindElement('ll_spin').Update(values['ll_slider']/faktor)
window.FindElement('lr_spin').Update(values['lr_slider']/faktor)
window.FindElement('rl_spin').Update(values['rl_slider']/faktor)
window.FindElement('rr_spin').Update(values['rr_slider']/faktor)
if event == 'Fit':
try:
leftFitPara = fitLinear(event, (values['ll_slider']/faktor,values['lr_slider']/faktor), data, ax, 'red')
rightFitPara = fitLinear(event, (values['rl_slider']/faktor,values['rr_slider']/faktor), data, ax, 'green')
if leftFit:
leftFit.set_ydata(LinearFit(data.index,*leftFitPara))
rightFit.set_ydata(LinearFit(data.index,*rightFitPara))
if inter_line: inter_line.remove()
if inter_dot: inter_dot.remove()
if fermi_edge_plot: fermi_edge_plot.remove()
if sexteen_plot: sexteen_plot.remove()
if eigthy4_plot: eigthy4_plot.remove()
else:
leftFit, = ax.plot(data.index, LinearFit(data.index, *leftFitPara), color = 'red', label='fit: a=%5.3f, b=%5.3f ' % tuple(leftFitPara))
rightFit, = ax.plot(data.index, LinearFit(data.index, *rightFitPara), color = 'green', label='fit: a=%5.3f, b=%5.3f ' % tuple(rightFitPara))
inter = interpolate(data, ax)
inter_line, = ax.plot(inter[0], inter[1])
inter_dot = ax.scatter(inter[0], inter[1])
except TypeError as error:
if str(error) == 'Improper input: N=2 must not exceed M=0':
print('Please select the appropriate limits for the fit')
pass
else:
print("Error:", sys.exc_info()[0])
raise
if event == 'Finde Fermi Edge':
try:
fermi_edge_plot, sexteen_plot, eigthy4_plot = finde_edge(inter,leftFitPara,rightFitPara,ax,window)
except:
print("Error:", sys.exc_info()[0])
pass
if event == 'Fit Fermi Function':
try:
xFit, yFit, out = fitFermi(data, float(values['E_f']), float(values['b']), float(values['s']), float(values['T'])) #####Hier noch die WERTE von GUI eintragen
fitParam = out.params.valuesdict()
window.FindElement('E_f').Update(str(fitParam['E_f']))
window.FindElement('b').Update(str(fitParam['b']))
window.FindElement('s').Update(str(fitParam['s']))
window.FindElement('T').Update(str(fitParam['T']))
ax.plot(xFit,yFit)
except:
print("Error:", sys.exc_info()[0])
pass
plt.draw()
if event == 'Cancel' or event is None: # be nice to your user, always have an exit from your form
line1.remove()
line2.remove()
line3.remove()
line4.remove()
if inter_line: inter_line.remove()
if inter_dot: inter_dot.remove()
if fermi_edge_plot: fermi_edge_plot.remove()
if sexteen_plot: sexteen_plot.remove()
if eigthy4_plot: eigthy4_plot.remove()
if leftFit: leftFit.remove()
if rightFit: rightFit.remove()
break
window.Close()
return event, values
def finde_edge(interPolData, fit1Para, fit2Para, ax, window):
for i in range(0, len(interPolData[0])):
diff = 0.5*(abs(LinearFit(interPolData[0][i],*fit1Para)-LinearFit(interPolData[0][i],*fit2Para)))
fermi_edge = interPolData[1][i] - LinearFit(interPolData[0][i],*fit2Para)
if fermi_edge <= diff:
fermi_edge_plot = ax.axvline(x=interPolData[0][i], color = 'k', dashes = (5, 1))
fermi_edge_x = interPolData[0][i]
plt.draw()
window.FindElement('fermi_edge').Update(str(fermi_edge_x))
break
for i in range(0, len(interPolData[0])):
diff = 0.16*(abs(LinearFit(interPolData[0][i],*fit1Para)-LinearFit(interPolData[0][i],*fit2Para)))
sexteen = interPolData[1][i] - LinearFit(interPolData[0][i],*fit2Para)
if sexteen <= diff:
sexteen_x = interPolData[0][i]
sexteen_plot = ax.axvline(x=interPolData[0][i], color = 'k', dashes = (5, 1))
plt.draw()
break
for i in range(0, len(interPolData[0])):
diff = 0.84*(abs(LinearFit(interPolData[0][i],*fit1Para)-LinearFit(interPolData[0][i],*fit2Para)))
eigthy4 = interPolData[1][i] - LinearFit(interPolData[0][i],*fit2Para)
if eigthy4 <= diff:
eigthy4_plot = ax.axvline(x=interPolData[0][i], color = 'k', dashes = (5, 1))
eigthy4_x = interPolData[0][i]
plt.draw()
window.FindElement('resolution').Update(str(abs(eigthy4_x-sexteen_x)))
break
return fermi_edge_plot, sexteen_plot, eigthy4_plot
def fitPanel_old(event, ax, data):
layout = [[sg.Text(r'$g = B + S\times f(T,E_f,E)$\n $f(T,E_f,E) = [\exp{((E-E_f)/(k_b\cdot T))+1}]^{-1}$')],
[sg.Text(r'E_f'), sg.InputText('16.89',key='E_f')],
[sg.Text(r'B'), sg.InputText('5000',key='B')],
[sg.Text(r'S'), sg.InputText('200000',key='S')],
[sg.Text(r'T'), sg.InputText('10',key='T')],
[sg.ReadButton('Fit'), sg.Cancel()],
]
window = sg.Window('Fit Parameter',force_top_level = True)
window.Layout(layout)
window.Finalize()
while True:
event2, values = window.Read()
if event2 is None:
break
if event2 == 'Fit':
try:
p0 = values.values('E_f','B','S','T')
print(p0)
event, values = fitFermi(event, data, ax, p0)
except:
print("Error:", sys.exc_info()[0])
raise
E_f, B, S, T = values#['16.89','5000', '200000', '10']
window.FindElement('E_f').Update(str(E_f))
window.FindElement('B').Update(str(B))
window.FindElement('S').Update(str(S))
window.FindElement('T').Update(str(T))
return event, values
def fermiFct(x,E_f,b,s,T):
k_b = const.value(u'Boltzmann constant in eV/K')
return b + s*(1./(np.exp((x-E_f)/(k_b*T))+1.))
def LinearFit(x,a,b):
return a*x+b
def fitLinear(event, x_range, data, ax, color):
mask = (data.index > x_range[0]) & (data.index <= x_range[1])
# try:
# p0=[float(x) for x in p0]
# except:
# print("Error:", sys.exc_info()[0])
# raise
try:
popt, pcov = curve_fit(LinearFit, data.index[mask], data.values[mask])
except:
print("Error:", sys.exc_info()[0])
raise
#fitPlot = ax.plot(data.index, LinearFit(data.index, *popt), color = color, label='fit: a=%5.3f, b=%5.3f ' % tuple(popt))
return popt
def fitFermi(data , a=16.9, b = 1., c = 1. , d =70., x_lim = None):
x = data.index
y = data.values
if x_lim is not None:
mask = (x > x_lim[0]) & (x <= x_lim[1])
x = x[mask]
y = y[mask]
#mod = lmfit.models.ExponentialModel()
mod = lmfit.Model(fermiFct)
#pars = mod.guess(y, x=x) ###(x,E_f,b,s,T):
out = mod.fit(y,E_f = a, b = b, s = c , T = d, x=x)
return (x,out.best_fit, out)
def fitFermi_old(event, data, ax, p0):
x_lim = ax.get_xlim()
y_lim = ax.get_ylim()
mask = (data.index > x_lim[0]) & (data.index <= x_lim[1])
# print(data.values[mask][:,0], data.values[mask][:,1])
# print(len(data.index[mask]), len(data.values[mask]))
# print(type(data.index[mask]), type(data.values[mask]))
try:
p0=[float(x) for x in p0]
except:
print("Error:", sys.exc_info()[0])
raise
try:
popt, pcov = curve_fit(fermiFct, data.index[mask], data.values[mask], p0=p0)
except:
print("Error:", sys.exc_info()[0])
raise
# if fitPlot:
# print(fitPlot)
# fitPlot.pop(0).remove()
fitPlot = ax.plot(data.index[mask], fermiFct(data.index[mask], *popt), 'r-', label='fit: E_f=%5.3f, T=%5.3f,b=%5.3f,c=%5.3f ' % tuple(popt))
ax.set_xlim(x_lim)
ax.set_ylim(y_lim)
plt.show()
#print('POPT:%s' % (popt))
values = {'E_f':popt[0],'B':popt[1],'S':popt[2],'T':popt[3]}
return event, values
def interpolate(data, ax, xstep = None):
'''
xstep: int faktor of the interpolated points. So if xstep = 2, two times more points would be created. Default 10
'''
x_lim = ax.get_xlim()
y_lim = ax.get_ylim()
if x_lim[0]<data.index.min():
x_lim = data.index.min(), x_lim[1]
if x_lim[1]>data.index.max():
x_lim = x_lim[0], data.index.max()
mask = (data.index > x_lim[0]) & (data.index <= x_lim[1])
f = interp1d(data.index[mask], data.values[mask], fill_value="extrapolate")
if xstep == None:
xstep = 10
newx = np.linspace(x_lim[0], x_lim[1], num=xstep*len(data.index[mask]), endpoint=True)
return newx, f(newx)
def saveReduceData(event, reddata):
event, (filename,) = sg.Window('Save data'). Layout([[sg.Text('Filename')], [sg.Input(), sg.SaveAs()], [sg.OK(), sg.Cancel()]]).Read()
reddata.to_pickle(filename)
return event
def allMethodsOf(object):
return [method_name for method_name in dir(object)
if callable(getattr(object, method_name))]
def main():
"""
Proceding of ARPES data sets from OMICON SES Software.
"""
__author__ = "Alexander Kononov"
__copyright__ = "Royalty-free"
__credits__ = ""
__license__ = ""
__version__ = "1.5"
__maintainer__ = "Alexander Kononov"
__email__ = "[email protected]"
__status__ = "Production"
# ------ Menu Definition ------ #
menu_def = [['File', ['Open', 'Exit' ]],
['Help', 'About...'], ]
# ------ GUI Defintion ------ #
layout = [
[sg.Menu(menu_def, )],
[sg.Output(size=(60, 20))]
]
window = sg.Window("UPhoS", default_element_size=(15, 1), auto_size_text=False, auto_size_buttons=False, default_button_element_size=(15, 1)).Layout(layout)
win = window.Finalize()
# ------ Loop & Process button menu choices ------ #
while True:
event, values = window.Read()
print(event)
if event == None or event == 'Exit':
break
# ------ Process menu choices ------ #
if event == 'About...':
sg.Popup(main.__doc__+'\n Author: '+__author__+'\n E-mail: '+__email__+'\n Copyright: '+\
__copyright__+'\n License: '+__license__+'\n Version: '+\
__version__+'\n Status: '+__status__)
elif event == 'Open':
filename = sg.PopupGetFile(r'file to open', no_window=True, default_path='../Data_for_python/')
try:
if filename: print(r'read: ' + filename.split('/')[-1])
if filename.endswith('.txt'):
data = dtp.readIgorTxt(filename)
else:
data = read_pickle(filename)
plotData(data, title = filename.split('/')[-1:])#, title = filename.split('/')[:-2])
except:
print('\tOpen file function was aborted.')
raise
pass
if __name__ == '__main__':
main()