forked from open-mmlab/mmsegmentation
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvitjax2mmseg.py
123 lines (102 loc) · 4.57 KB
/
vitjax2mmseg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
# Copyright (c) OpenMMLab. All rights reserved.
import argparse
import os.path as osp
import mmcv
import numpy as np
import torch
def vit_jax_to_torch(jax_weights, num_layer=12):
torch_weights = dict()
# patch embedding
conv_filters = jax_weights['embedding/kernel']
conv_filters = conv_filters.permute(3, 2, 0, 1)
torch_weights['patch_embed.projection.weight'] = conv_filters
torch_weights['patch_embed.projection.bias'] = jax_weights[
'embedding/bias']
# pos embedding
torch_weights['pos_embed'] = jax_weights[
'Transformer/posembed_input/pos_embedding']
# cls token
torch_weights['cls_token'] = jax_weights['cls']
# head
torch_weights['ln1.weight'] = jax_weights['Transformer/encoder_norm/scale']
torch_weights['ln1.bias'] = jax_weights['Transformer/encoder_norm/bias']
# transformer blocks
for i in range(num_layer):
jax_block = f'Transformer/encoderblock_{i}'
torch_block = f'layers.{i}'
# attention norm
torch_weights[f'{torch_block}.ln1.weight'] = jax_weights[
f'{jax_block}/LayerNorm_0/scale']
torch_weights[f'{torch_block}.ln1.bias'] = jax_weights[
f'{jax_block}/LayerNorm_0/bias']
# attention
query_weight = jax_weights[
f'{jax_block}/MultiHeadDotProductAttention_1/query/kernel']
query_bias = jax_weights[
f'{jax_block}/MultiHeadDotProductAttention_1/query/bias']
key_weight = jax_weights[
f'{jax_block}/MultiHeadDotProductAttention_1/key/kernel']
key_bias = jax_weights[
f'{jax_block}/MultiHeadDotProductAttention_1/key/bias']
value_weight = jax_weights[
f'{jax_block}/MultiHeadDotProductAttention_1/value/kernel']
value_bias = jax_weights[
f'{jax_block}/MultiHeadDotProductAttention_1/value/bias']
qkv_weight = torch.from_numpy(
np.stack((query_weight, key_weight, value_weight), 1))
qkv_weight = torch.flatten(qkv_weight, start_dim=1)
qkv_bias = torch.from_numpy(
np.stack((query_bias, key_bias, value_bias), 0))
qkv_bias = torch.flatten(qkv_bias, start_dim=0)
torch_weights[f'{torch_block}.attn.attn.in_proj_weight'] = qkv_weight
torch_weights[f'{torch_block}.attn.attn.in_proj_bias'] = qkv_bias
to_out_weight = jax_weights[
f'{jax_block}/MultiHeadDotProductAttention_1/out/kernel']
to_out_weight = torch.flatten(to_out_weight, start_dim=0, end_dim=1)
torch_weights[
f'{torch_block}.attn.attn.out_proj.weight'] = to_out_weight
torch_weights[f'{torch_block}.attn.attn.out_proj.bias'] = jax_weights[
f'{jax_block}/MultiHeadDotProductAttention_1/out/bias']
# mlp norm
torch_weights[f'{torch_block}.ln2.weight'] = jax_weights[
f'{jax_block}/LayerNorm_2/scale']
torch_weights[f'{torch_block}.ln2.bias'] = jax_weights[
f'{jax_block}/LayerNorm_2/bias']
# mlp
torch_weights[f'{torch_block}.ffn.layers.0.0.weight'] = jax_weights[
f'{jax_block}/MlpBlock_3/Dense_0/kernel']
torch_weights[f'{torch_block}.ffn.layers.0.0.bias'] = jax_weights[
f'{jax_block}/MlpBlock_3/Dense_0/bias']
torch_weights[f'{torch_block}.ffn.layers.1.weight'] = jax_weights[
f'{jax_block}/MlpBlock_3/Dense_1/kernel']
torch_weights[f'{torch_block}.ffn.layers.1.bias'] = jax_weights[
f'{jax_block}/MlpBlock_3/Dense_1/bias']
# transpose weights
for k, v in torch_weights.items():
if 'weight' in k and 'patch_embed' not in k and 'ln' not in k:
v = v.permute(1, 0)
torch_weights[k] = v
return torch_weights
def main():
# stole refactoring code from Robin Strudel, thanks
parser = argparse.ArgumentParser(
description='Convert keys from jax official pretrained vit models to '
'MMSegmentation style.')
parser.add_argument('src', help='src model path or url')
# The dst path must be a full path of the new checkpoint.
parser.add_argument('dst', help='save path')
args = parser.parse_args()
jax_weights = np.load(args.src)
jax_weights_tensor = {}
for key in jax_weights.files:
value = torch.from_numpy(jax_weights[key])
jax_weights_tensor[key] = value
if 'L_16-i21k' in args.src:
num_layer = 24
else:
num_layer = 12
torch_weights = vit_jax_to_torch(jax_weights_tensor, num_layer)
mmcv.mkdir_or_exist(osp.dirname(args.dst))
torch.save(torch_weights, args.dst)
if __name__ == '__main__':
main()