diff --git a/.github/workflows/sphinx-build.yml b/.github/workflows/sphinx-build.yml index 79b08d76c3..dab00cede7 100644 --- a/.github/workflows/sphinx-build.yml +++ b/.github/workflows/sphinx-build.yml @@ -38,7 +38,6 @@ jobs: - name: Install Dependencies run: | python -m pip install -U pip - pip install git+https://github.com/optuna/optuna-integration@main pip install --progress-bar off -U .[document] --extra-index-url https://download.pytorch.org/whl/cpu - name: Output installed packages @@ -92,7 +91,6 @@ jobs: - name: Install Dependencies run: | python -m pip install -U pip - pip install git+https://github.com/optuna/optuna-integration@main pip install --progress-bar off -U .[document] --extra-index-url https://download.pytorch.org/whl/cpu - name: Output installed packages diff --git a/.readthedocs.yml b/.readthedocs.yml index ce80dbe166..cc21c52ee8 100644 --- a/.readthedocs.yml +++ b/.readthedocs.yml @@ -9,9 +9,6 @@ build: os: ubuntu-22.04 tools: python: "3.11" - jobs: - post_install: - - pip install git+https://github.com/optuna/optuna-integration@main # Build documentation in the docs/ directory with Sphinx sphinx: diff --git a/tutorial/10_key_features/003_efficient_optimization_algorithms.py b/tutorial/10_key_features/003_efficient_optimization_algorithms.py index c2243cef77..a095c55d54 100644 --- a/tutorial/10_key_features/003_efficient_optimization_algorithms.py +++ b/tutorial/10_key_features/003_efficient_optimization_algorithms.py @@ -181,9 +181,9 @@ def objective(trial): # For example, `optuna_integration.LightGBMPruningCallback `_ introduces pruning without directly changing the logic of training iteration. # (See also `example `_ for the entire script.) # -# .. code-block:: python +# .. code-block:: text # -# import optuna_integration +# import optuna.integration # -# pruning_callback = optuna_integration.LightGBMPruningCallback(trial, 'validation-error') +# pruning_callback = optuna.integration.LightGBMPruningCallback(trial, 'validation-error') # gbm = lgb.train(param, dtrain, valid_sets=[dvalid], callbacks=[pruning_callback]) diff --git a/tutorial/10_key_features/005_visualization.py b/tutorial/10_key_features/005_visualization.py index 926b4a9e75..8e1e444e81 100644 --- a/tutorial/10_key_features/005_visualization.py +++ b/tutorial/10_key_features/005_visualization.py @@ -53,8 +53,6 @@ from optuna.visualization import plot_slice from optuna.visualization import plot_timeline -import optuna_integration - SEED = 42 @@ -80,8 +78,7 @@ def objective(trial): } # Add a callback for pruning. - pruning_callback = optuna_integration.LightGBMPruningCallback(trial, "auc") - gbm = lgb.train(param, dtrain, valid_sets=[dvalid], callbacks=[pruning_callback]) + gbm = lgb.train(param, dtrain, valid_sets=[dvalid]) preds = gbm.predict(valid_x) pred_labels = np.rint(preds) @@ -103,10 +100,6 @@ def objective(trial): # Visualize the optimization history. See :func:`~optuna.visualization.plot_optimization_history` for the details. plot_optimization_history(study) -################################################################################################### -# Visualize the learning curves of the trials. See :func:`~optuna.visualization.plot_intermediate_values` for the details. -plot_intermediate_values(study) - ################################################################################################### # Visualize high-dimensional parameter relationships. See :func:`~optuna.visualization.plot_parallel_coordinate` for the details. plot_parallel_coordinate(study) @@ -152,18 +145,3 @@ def objective(trial): ################################################################################################### # Visualize the optimization timeline of performed trials. See :func:`~optuna.visualization.plot_timeline` for the details. plot_timeline(study) - -################################################################################################### -# Customize generated figures -# --------------------------- -# In :mod:`optuna.visualization` and :mod:`optuna.visualization.matplotlib`, a function returns an editable figure object: -# :class:`plotly.graph_objects.Figure` or :class:`matplotlib.axes.Axes` depending on the module. -# This allows users to modify the generated figure for their demand by using API of the visualization library. -# The following example replaces figure titles drawn by Plotly-based :func:`~optuna.visualization.plot_intermediate_values` manually. -fig = plot_intermediate_values(study) - -fig.update_layout( - title="Hyperparameter optimization for GBDT-based binary classification", - xaxis_title="Iteration", - yaxis_title="Validation AUC", -) diff --git a/tutorial/20_recipes/008_specify_params.py b/tutorial/20_recipes/008_specify_params.py index 289dcc7d0a..6cdea0bae4 100644 --- a/tutorial/20_recipes/008_specify_params.py +++ b/tutorial/20_recipes/008_specify_params.py @@ -37,8 +37,6 @@ import optuna -import optuna_integration - ################################################################################################### # Define the objective function. @@ -59,8 +57,7 @@ def objective(trial): } # Add a callback for pruning. - pruning_callback = optuna_integration.LightGBMPruningCallback(trial, "auc") - gbm = lgb.train(param, dtrain, valid_sets=[dvalid], callbacks=[pruning_callback]) + gbm = lgb.train(param, dtrain, valid_sets=[dvalid]) preds = gbm.predict(valid_x) pred_labels = np.rint(preds)