-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathengine.py
49 lines (41 loc) · 1.57 KB
/
engine.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
import torch
from torch import nn
from torch.utils.data import DataLoader
from typing import Dict, List
import tqdm
def loop_fn(mode, dataset, dataloader, model, criterion, optimizer, device):
if mode=='train':
model.train()
elif mode=='test':
model.eval()
cost = 0
for feature, target in tqdm(dataloader, desc=mode.title()):
feature, target = feature.to(device), target.to(device)
output = model(feature)
loss = criterion(output, target)
if mode=='train':
loss.backward()
optimizer.step()
optimizer.zero_grad()
cost += loss.item() * feature.shape[0]
cost = cost / len(dataset)
return cost
def train(model: torch.nn.Module,
train_set: torch.utils.data.Dataset,
test_set: torch.utils.data.Dataset,
criterion: torch.nn.Module,
trainloader: torch.utils.data.DataLoader,
testloader: torch.utils.data.DataLoader,
optimizer: torch.optim.Optimizer,
loss_fn: torch.nn.Module,
epochs: int,
device: torch.device):
epochs = epochs
train_cost, test_cost = [], []
for i in range(epochs):
cost = loop_fn("train", train_set, trainloader, model, criterion, optimizer, device)
train_cost.append(cost)
with torch.no_grad():
cost = loop_fn("test", test_set, testloader, model, criterion, optimizer, device)
test_cost.append(cost)
print(f"\rEpoch: {i+1}/{epochs} | train_cost: {train_cost[-1]: 4f} | test_cost: {test_cost[-1]: 4f} | ", end=" ")