Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

many compression algorithm benchmark: applied to binary voxel map #70

Open
HiroIshida opened this issue Oct 17, 2024 · 0 comments
Open

Comments

@HiroIshida
Copy link
Owner

HiroIshida commented Oct 17, 2024

とりあえず zstd の level = 15を使うのがよさそう
image

import numpy as np
import matplotlib.pyplot as plt
import tqdm
import time
import zstandard
import lz4
import lzma
import zlib
import zstd
import brotli

from rpbench.articulated.world.jail import ConwayJailWorld

def zlib_compress(data, level):
    return zlib.compress(data, level)

def lzma_compress(data, level):
    return lzma.compress(data, preset=level)

def zstd_compress(data, level):
    return zstd.compress(data, level)

def brotli_compress(data, level):
    return brotli.compress(data, quality=level)

def bench(datas, algorithm, max_level):
    results = []
    for level in tqdm.tqdm(range(1, max_level + 1)):
        size_sum = 0.0
        elapsed_sum = 0.0
        n_data = len(datas)
        for data in datas:
            ts = time.time()
            b = algorithm(data, level)
            elapsed = time.time() - ts
            size_sum += len(b)
            elapsed_sum += elapsed
        results.append((size_sum / n_data, 1000 * elapsed_sum / n_data))
    return results

n = 100
worlds = [ConwayJailWorld.sample() for _ in range(n)]
datas = [world.voxels.to_3darray() for world in worlds]
print("data prepared")

fig, ax = plt.subplots()

results = bench(datas, brotli_compress, 11)
sizes, times = zip(*results)
ax.plot(np.array(sizes), np.array(times), '^', label='brotli')

results = bench(datas, zstd_compress, 22)
sizes, times = zip(*results)
ax.plot(np.array(sizes), np.array(times), 's', label='zstd')

results = bench(datas, zlib_compress, 9)
sizes, times = zip(*results)
ax.plot(np.array(sizes), np.array(times), 'o', label='zlib')

results = bench(datas, lzma_compress, 9)
sizes, times = zip(*results)
ax.plot(np.array(sizes), np.array(times), 'x', label='lzma')

ax.set_xlim(left=0)
plt.legend(prop={'size': 20})
ax.set_xlabel("compressed size (bytes)", fontsize=20)
ax.set_ylabel("time (ms)", fontsize=20)
ax.tick_params(axis='both', which='major', labelsize=14)
plt.grid()
plt.show()
@HiroIshida HiroIshida changed the title many compression algorithm: applied to binary voxel map many compression algorithm benchmark: applied to binary voxel map Oct 17, 2024
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant