-
Notifications
You must be signed in to change notification settings - Fork 0
/
blindClusteringBatchGulyas.m
211 lines (149 loc) · 4.74 KB
/
blindClusteringBatchGulyas.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
close all, clear all
r = RGCclass(0); r.lazyLoad('Gulyas');
figVis = 'off';
useFeatures = { 'dendriticField', ...
'fractalDimensionBoxCounting', ...
'meanSegmentLength', ...
'totalDendriticLength', ...
'meanSegmentTortuosity' };
% useFeaturesAlt = { 'branchAssymetry', ...
% 'dendriticDensity', ...
% 'dendriticDiameter', ...
% 'dendriticField', ...
% 'densityOfBranchPoints', ...
% 'fractalDimensionBoxCounting', ...
% 'meanBranchAngle', ...
% 'meanTerminalSegmentLength', ...
% 'numBranchPoints', ...
% 'numSegments', ...
% 'somaArea', ...
% 'totalDendriticLength' };
r.setFeatureMat(useFeatures);
% r.setFeatureMat(useFeaturesAlt);
% yVar = 'densityOfBranchPoints';
yVar = 'totalDendriticLength';
xVar = 'meanSegmentTortuosity';
x = r.getVariable(xVar);
y = r.getVariable(yVar);
marker = '+o*.xsdv><ph';
kMax = 20;
silMean = [];
RG = RGCgui(r);
allClusterID = {};
% Choose how many clusters we want to use in this figure
for k = 1:kMax
if(k == 1)
clusterID = r.RGCtypeID;
kMax = 5;
else
clusterID = r.blindClustering(k);
kMax = k;
end
allClusterID{k} = clusterID;
figure('visible','off')
% subplot(1,2,1)
[s,h] = silhouette(r.featureMat,clusterID);
box off
silMean(k) = mean(s);
set(gca,'fontsize',20)
set(get(gca,'xlabel'),'fontsize',25)
set(get(gca,'ylabel'),'fontsize',25)
if(k == 1)
set(gca,'yticklabel',r.RGCuniqueNames)
end
if(k == 1)
fName = 'FIGS/Gulyas-Silhouette-measure-genetic-marker-silhouette.pdf';
else
fName = sprintf('FIGS/Gulyas-Silhouette-measure-k-%d-silhouette.pdf',k);
end
saveas(gcf,fName,'pdf')
figure('visible',figVis)
% subplot(1,2,2)
p = [];
pLeg = {};
if(k == 1)
for i = 1:numel(r.RGCuniqueIDs)
idx = find(clusterID == r.RGCuniqueIDs(i));
p(i) = plot(x(idx),y(idx), ...
'.', 'markersize', 20,...
'color', RG.classColours(r.RGCuniqueIDs(i),:));
hold all
pLeg{i} = r.RGCuniqueNames{i};
end
else
for i = 1:kMax
idx = find(clusterID == i);
p(i) = plot(x(idx),y(idx),marker(mod(i-1,numel(marker))+1));
hold all
pLeg{i} = num2str(i);
end
end
legend(p,pLeg,'location','northeastoutside')
xlabel(r.featureNameDisplay(xVar),'fontsize',25)
ylabel(r.featureNameDisplay(yVar),'fontsize',25)
axis tight
box off
set(gca,'fontsize',20)
if(k == 1)
fName = 'FIGS/Gulyas-Silhouette-measure-genetic-marker-feature-space.pdf';
else
fName = sprintf('FIGS/Gulyas-Silhouette-measure-k-%d-feature-space.pdf',k);
end
saveas(gcf,fName,'pdf')
end
% I have been bad.
% k = 1, is real data, with five clusters, so need to plot that
% point separately.
%
% Summarise the silhouette values
figure('visible','on')
hb = plot(2:kMax,silMean(2:kMax),'k-','linewidth',2); hold on
hr = plot(numel(r.RGCuniqueIDs),silMean(1),'r.','markersize',20);
xlabel('Number of clusters','fontsize',12)
ylabel('Mean silhouette value','fontsize',12)
legend([hb hr], 'Blind clustering', 'Genetically marked', ...
'location','northeast')
set(gca,'fontsize',10)
a = axis;
a(1) = 2;
a(3) = 0; a(4) = 1;
axis(a);
set(gca,'xminortick','off')
set(gca,'yminortick','off')
set(gca,'xtick',2:1:20)
set(gca,'ytick',0:0.1:1)
set(gca,'xticklabel', {'2','','','5', ...
'','','','','10', ...
'','','','','15', ...
'','','','','20' })
set(gca,'yticklabel', {'0','','','','','0.5', ...
'','','','','1'})
box off
set(gcf,'paperunits','centimeters')
set(gcf,'units','centimeters')
set(gcf,'papersize',[8 8])
set(gcf,'paperposition',[0 0 8 8])
%saveas(gcf,'FIGS/Gulyas-Silhouette-measure-summary.pdf','pdf')
printA4('FIGS/Gulyas-Silhouette-measure-summary.eps')
%
% Last thing we want to make a plot to show how the blind clusters
% and the genetic clusters relate to each other.
%
for nClust = [2 3 5];
clusterID = allClusterID{nClust};
IDmatrix = zeros(numel(r.RGCuniqueNames),nClust);
for i = 1:numel(r.RGC)
IDmatrix(r.RGCtypeID(i),clusterID(i)) = ...
IDmatrix(r.RGCtypeID(i),clusterID(i)) + 1;
end
columnHeaders = {};
for i = 1:nClust
columnHeaders{i} = num2str(i);
end
str = makeLatexTableHeaders(columnHeaders,r.RGCuniqueNames,IDmatrix,'%d','Blind Cluster','Genetic Type')
str2 = strrep(str,'\','\\');
fName = sprintf('RESULTS/Gulyas-BlindClustering-latex-n-%d.tex', nClust);
fid = fopen(fName,'w');
fprintf(fid,str2);
fclose(fid);
end